Suppr超能文献

从巴西医院数据推断 COVID-19 的流行病学分布。

Inference of COVID-19 epidemiological distributions from Brazilian hospital data.

机构信息

MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK.

Department of Mathematics, Imperial College London, London SW7 2AZ, UK.

出版信息

J R Soc Interface. 2020 Nov;17(172):20200596. doi: 10.1098/rsif.2020.0596. Epub 2020 Nov 25.

Abstract

Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalized with COVID-19 using a large dataset ( = 21 000 - 157 000) from the Brazilian Sistema de Informação de Vigilância Epidemiológica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2 and 17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalized lognormal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.

摘要

了解 COVID-19 的流行病学分布,如从患者入院到死亡的时间,与有效的初级和二级保健规划直接相关,此外,对大流行进行数学建模通常也是如此。我们使用来自巴西流感监测信息系统数据库的大型数据集(= 21000-157000)确定了因 COVID-19 住院的患者的流行病学分布。使用具有部分合并的联合贝叶斯次国家模型来同时描述巴西的 26 个州和一个联邦区,并显示出症状出现到死亡时间的平均值存在显著差异,不同州之间的范围在 11.2 到 17.8 天之间,巴西的平均值为 15.2 天。我们有强有力的证据支持特定概率密度函数选择:例如,伽马分布最适合发病到死亡的情况,广义对数正态分布最适合发病到住院的情况。我们的结果表明,流行病学分布具有相当大的地域差异,并提供了在中低收入环境中这些分布的首次估计。在次国家一级,COVID-19 结果时间的变化与贫困、贫困和隔离程度相关,而与平均年龄、财富和城市化程度的相关性较弱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eedf/7729050/5337a4045754/rsif20200596-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验