Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
Research & Development, ATGC Inc., 100 E Lancaster Avenue, LIMR Building Lab129, Wynnewood, PA, 19096, USA.
Nat Commun. 2020 Nov 27;11(1):6082. doi: 10.1038/s41467-020-19842-2.
Gene editing nuclease represented by Cas9 efficiently generates DNA double strand breaks at the target locus, followed by repair through either the error-prone non-homologous end joining or the homology directed repair pathways. To improve Cas9's homology directed repair capacity, here we report the development of miCas9 by fusing a minimal motif consisting of thirty-six amino acids to spCas9. MiCas9 binds RAD51 through this fusion motif and enriches RAD51 at the target locus. In comparison to spCas9, miCas9 enhances double-stranded DNA mediated large size gene knock-in rates, systematically reduces off-target insertion and deletion events, maintains or increases single-stranded oligodeoxynucleotides mediated precise gene editing rates, and effectively reduces on-target insertion and deletion rates in knock-in applications. Furthermore, we demonstrate that this fusion motif can work as a "plug and play" module, compatible and synergistic with other Cas9 variants. MiCas9 and the minimal fusion motif may find broad applications in gene editing research and therapeutics.
由 Cas9 代表的基因编辑核酸酶在靶位点有效地产生 DNA 双链断裂,随后通过易错的非同源末端连接或同源定向修复途径进行修复。为了提高 Cas9 的同源定向修复能力,我们在此通过融合由三十六个氨基酸组成的最小基序来开发 miCas9。MiCas9 通过该融合基序与 RAD51 结合,并在靶位点富集 RAD51。与 spCas9 相比,miCas9 提高了双链 DNA 介导的大尺寸基因敲入率,系统地减少了脱靶插入和缺失事件,维持或提高了单链寡脱氧核苷酸介导的精确基因编辑率,并有效地降低了敲入应用中的靶插入和缺失率。此外,我们证明该融合基序可作为“即插即用”模块,与其他 Cas9 变体兼容且具有协同作用。MiCas9 和最小融合基序可能在基因编辑研究和治疗中有广泛的应用。