Leung Angus, Tsuchiya Naotsugu
Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia.
Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan.
Entropy (Basel). 2022 Apr 29;24(5):625. doi: 10.3390/e24050625.
How a system generates conscious experience remains an elusive question. One approach towards answering this is to consider the information available in the system from the perspective of the system itself. Integrated information theory (IIT) proposes a measure to capture this integrated information (Φ). While Φ can be computed at any spatiotemporal scale, IIT posits that it be applied at the scale at which the measure is maximised. Importantly, Φ in conscious systems should emerge to be maximal not at the smallest spatiotemporal scale, but at some macro scale where system elements or timesteps are grouped into larger elements or timesteps. Emergence in this sense has been demonstrated in simple example systems composed of logic gates, but it remains unclear whether it occurs in real neural recordings which are generally continuous and noisy. Here we first utilise a computational model to confirm that Φ becomes maximal at the temporal scales underlying its generative mechanisms. Second, we search for emergence in local field potentials from the fly brain recorded during wakefulness and anaesthesia, finding that normalised Φ (wake/anaesthesia), but not raw Φ values, peaks at 5 ms. Lastly, we extend our model to investigate why raw Φ values themselves did not peak. This work extends the application of Φ to simple artificial systems consisting of logic gates towards searching for emergence of a macro spatiotemporal scale in real neural systems.
一个系统如何产生有意识的体验仍然是一个难以捉摸的问题。回答这个问题的一种方法是从系统本身的角度考虑系统中可用的信息。整合信息理论(IIT)提出了一种度量来捕捉这种整合信息(Φ)。虽然Φ可以在任何时空尺度上进行计算,但IIT假定它应应用于该度量最大化的尺度。重要的是,有意识系统中的Φ不应在最小的时空尺度上达到最大值,而应在某个宏观尺度上达到最大值,在这个尺度上,系统元素或时间步长被组合成更大的元素或时间步长。在由逻辑门组成的简单示例系统中已经证明了这种意义上的涌现,但在通常是连续且有噪声的真实神经记录中是否会出现这种情况仍不清楚。在这里,我们首先利用一个计算模型来确认Φ在其生成机制所基于的时间尺度上达到最大值。其次,我们在清醒和麻醉期间记录的果蝇大脑局部场电位中寻找涌现现象,发现归一化的Φ(清醒/麻醉)而非原始Φ值在5毫秒时达到峰值。最后,我们扩展我们的模型来研究为什么原始Φ值本身没有达到峰值。这项工作将Φ的应用从由逻辑门组成的简单人工系统扩展到在真实神经系统中寻找宏观时空尺度的涌现现象。