Suppr超能文献

用于合成下肢伤口可操作护理决策的机器学习模型。

Machine learning models for synthesizing actionable care decisions on lower extremity wounds.

作者信息

Nguyen Holly, Agu Emmanuel, Tulu Bengisu, Strong Diane, Mombini Haadi, Pedersen Peder, Lindsay Clifford, Dunn Raymond, Loretz Lorraine

机构信息

Worcester Polytechnic Institute, 100 Institute Road, Worcester and 01609, United States.

University of Massachusetts Medical School/UMass Memorial Health Car, 55 N Lake Ave, Worcester and 01655, United States.

出版信息

Smart Health (Amst). 2020 Nov;18. doi: 10.1016/j.smhl.2020.100139. Epub 2020 Sep 17.

Abstract

Lower extremity chronic wounds affect 4.5 million Americans annually. Due to inadequate access to wound experts in underserved areas, many patients receive non-uniform, non-standard wound care, resulting in increased costs and lower quality of life. We explored machine learning classifiers to generate actionable wound care decisions about four chronic wound types (diabetic foot, pressure, venous, and arterial ulcers). These decisions (target classes) were: (1) Continue current treatment, (2) Request non-urgent change in treatment from a wound specialist, (3) Refer patient to a wound specialist. We compare classification methods (single classifiers, bagged & boosted ensembles, and a deep learning network) to investigate (1) whether visual wound features are sufficient for generating a decision and (2) whether adding unstructured text from wound experts increases classifier accuracy. Using 205 wound images, the Gradient Boosted Machine (XGBoost) outperformed other methods when using both visual and textual wound features, achieving 81% accuracy. Using only visual features decreased the accuracy to 76%, achieved by a Support Vector Machine classifier. We conclude that machine learning classifiers can generate accurate wound care decisions on lower extremity chronic wounds, an important step toward objective, standardized wound care. Higher decision-making accuracy was achieved by leveraging clinical comments from wound experts.

摘要

下肢慢性伤口每年影响450万美国人。由于在医疗服务不足的地区难以获得伤口专家的服务,许多患者接受的伤口护理不统一、不标准,导致成本增加和生活质量下降。我们探索了机器学习分类器,以针对四种慢性伤口类型(糖尿病足、压疮、静脉性溃疡和动脉性溃疡)做出可行的伤口护理决策。这些决策(目标类别)为:(1)继续当前治疗,(2)请求伤口专家进行非紧急的治疗变更,(3)将患者转诊给伤口专家。我们比较了分类方法(单分类器、袋装和增强集成以及深度学习网络),以研究(1)视觉伤口特征是否足以做出决策,以及(2)添加伤口专家的非结构化文本是否能提高分类器的准确性。使用205张伤口图像,梯度提升机(XGBoost)在同时使用视觉和文本伤口特征时优于其他方法,准确率达到81%。仅使用视觉特征时,支持向量机分类器的准确率降至76%。我们得出结论,机器学习分类器可以对下肢慢性伤口做出准确的伤口护理决策,这是朝着客观、标准化伤口护理迈出的重要一步。通过利用伤口专家的临床意见,决策准确性更高。

相似文献

1
Machine learning models for synthesizing actionable care decisions on lower extremity wounds.
Smart Health (Amst). 2020 Nov;18. doi: 10.1016/j.smhl.2020.100139. Epub 2020 Sep 17.
2
Multiclass wound image classification using an ensemble deep CNN-based classifier.
Comput Biol Med. 2021 Jul;134:104536. doi: 10.1016/j.compbiomed.2021.104536. Epub 2021 Jun 1.
5
Single-use negative pressure wound therapy for the treatment of chronic lower leg wounds.
J Wound Care. 2015 Feb;24 Suppl 2:S4-9. doi: 10.12968/jowc.2015.24.Sup2.S4.
8
Diagnosis and treatment of diabetic foot infections.
Plast Reconstr Surg. 2006 Jun;117(7 Suppl):212S-238S. doi: 10.1097/01.prs.0000222737.09322.77.
9
Binary tissue classification on wound images with neural networks and bayesian classifiers.
IEEE Trans Med Imaging. 2010 Feb;29(2):410-27. doi: 10.1109/TMI.2009.2033595. Epub 2009 Oct 13.
10

引用本文的文献

1
Multimodal AI for Home Wound Patient Referral Decisions From Images With Specialist Annotations.
IEEE J Transl Eng Health Med. 2025 Jul 11;13:341-353. doi: 10.1109/JTEHM.2025.3588427. eCollection 2025.
4
Clinical decision support systems for diabetic foot ulcers: a scoping review.
Rev Esc Enferm USP. 2024 Feb 9;57:e20230218. doi: 10.1590/1980-220X-REEUSP-2023-0218en. eCollection 2024.
6
Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images.
J Med Syst. 2024 Jan 16;48(1):14. doi: 10.1007/s10916-023-02029-9.
7
Intelligent Care Management for Diabetic Foot Ulcers: A Scoping Review of Computer Vision and Machine Learning Techniques and Applications.
J Diabetes Sci Technol. 2025 May;19(3):820-829. doi: 10.1177/19322968231213378. Epub 2023 Nov 12.
8
Initial Clinical Experience with a Simple, Home System for Early Detection and Monitoring of Diabetic Foot Ulcers: The Foot Selfie.
J Diabetes Sci Technol. 2023 Jan;17(1):79-88. doi: 10.1177/19322968211053348. Epub 2021 Oct 31.

本文引用的文献

2
Natural language processing of clinical notes for identification of critical limb ischemia.
Int J Med Inform. 2018 Mar;111:83-89. doi: 10.1016/j.ijmedinf.2017.12.024. Epub 2017 Dec 28.
3
Hierarchical attention networks for information extraction from cancer pathology reports.
J Am Med Inform Assoc. 2018 Mar 1;25(3):321-330. doi: 10.1093/jamia/ocx131.
4
Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.
J Am Med Inform Assoc. 2018 May 1;25(5):568-571. doi: 10.1093/jamia/ocx125.
5
The humanistic and economic burden of chronic wounds: a protocol for a systematic review.
Syst Rev. 2017 Jan 24;6(1):15. doi: 10.1186/s13643-016-0400-8.
6
Area Determination of Diabetic Foot Ulcer Images Using a Cascaded Two-Stage SVM-Based Classification.
IEEE Trans Biomed Eng. 2017 Sep;64(9):2098-2109. doi: 10.1109/TBME.2016.2632522. Epub 2016 Nov 23.
8
Health economic burden that wounds impose on the National Health Service in the UK.
BMJ Open. 2015 Dec 7;5(12):e009283. doi: 10.1136/bmjopen-2015-009283.
9
Identification of subjects with polycystic ovary syndrome using electronic health records.
Reprod Biol Endocrinol. 2015 Oct 29;13:116. doi: 10.1186/s12958-015-0115-z.
10
Challenges in the Treatment of Chronic Wounds.
Adv Wound Care (New Rochelle). 2015 Sep 1;4(9):560-582. doi: 10.1089/wound.2015.0635.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验