Nguyen Holly, Agu Emmanuel, Tulu Bengisu, Strong Diane, Mombini Haadi, Pedersen Peder, Lindsay Clifford, Dunn Raymond, Loretz Lorraine
Worcester Polytechnic Institute, 100 Institute Road, Worcester and 01609, United States.
University of Massachusetts Medical School/UMass Memorial Health Car, 55 N Lake Ave, Worcester and 01655, United States.
Smart Health (Amst). 2020 Nov;18. doi: 10.1016/j.smhl.2020.100139. Epub 2020 Sep 17.
Lower extremity chronic wounds affect 4.5 million Americans annually. Due to inadequate access to wound experts in underserved areas, many patients receive non-uniform, non-standard wound care, resulting in increased costs and lower quality of life. We explored machine learning classifiers to generate actionable wound care decisions about four chronic wound types (diabetic foot, pressure, venous, and arterial ulcers). These decisions (target classes) were: (1) Continue current treatment, (2) Request non-urgent change in treatment from a wound specialist, (3) Refer patient to a wound specialist. We compare classification methods (single classifiers, bagged & boosted ensembles, and a deep learning network) to investigate (1) whether visual wound features are sufficient for generating a decision and (2) whether adding unstructured text from wound experts increases classifier accuracy. Using 205 wound images, the Gradient Boosted Machine (XGBoost) outperformed other methods when using both visual and textual wound features, achieving 81% accuracy. Using only visual features decreased the accuracy to 76%, achieved by a Support Vector Machine classifier. We conclude that machine learning classifiers can generate accurate wound care decisions on lower extremity chronic wounds, an important step toward objective, standardized wound care. Higher decision-making accuracy was achieved by leveraging clinical comments from wound experts.
下肢慢性伤口每年影响450万美国人。由于在医疗服务不足的地区难以获得伤口专家的服务,许多患者接受的伤口护理不统一、不标准,导致成本增加和生活质量下降。我们探索了机器学习分类器,以针对四种慢性伤口类型(糖尿病足、压疮、静脉性溃疡和动脉性溃疡)做出可行的伤口护理决策。这些决策(目标类别)为:(1)继续当前治疗,(2)请求伤口专家进行非紧急的治疗变更,(3)将患者转诊给伤口专家。我们比较了分类方法(单分类器、袋装和增强集成以及深度学习网络),以研究(1)视觉伤口特征是否足以做出决策,以及(2)添加伤口专家的非结构化文本是否能提高分类器的准确性。使用205张伤口图像,梯度提升机(XGBoost)在同时使用视觉和文本伤口特征时优于其他方法,准确率达到81%。仅使用视觉特征时,支持向量机分类器的准确率降至76%。我们得出结论,机器学习分类器可以对下肢慢性伤口做出准确的伤口护理决策,这是朝着客观、标准化伤口护理迈出的重要一步。通过利用伤口专家的临床意见,决策准确性更高。