Suppr超能文献

基于 Pareto 前沿推断的 ParTI 算法导致适应性表型优化的猖獗错误检测。

Rampant False Detection of Adaptive Phenotypic Optimization by ParTI-Based Pareto Front Inference.

机构信息

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Mol Biol Evol. 2021 Apr 13;38(4):1653-1664. doi: 10.1093/molbev/msaa330.

Abstract

Organisms face tradeoffs in performing multiple tasks. Identifying the optimal phenotypes maximizing the organismal fitness (or Pareto front) and inferring the relevant tasks allow testing phenotypic adaptations and help delineate evolutionary constraints, tradeoffs, and critical fitness components, so are of broad interest. It has been proposed that Pareto fronts can be identified from high-dimensional phenotypic data, including molecular phenotypes such as gene expression levels, by fitting polytopes (lines, triangles, tetrahedrons, and so on), and a program named ParTI was recently introduced for this purpose. ParTI has identified Pareto fronts and inferred phenotypes best for individual tasks (or archetypes) from numerous data sets such as the beak morphologies of Darwin's finches and mRNA concentrations in human tumors, implying evolutionary optimizations of the involved traits. Nevertheless, the reliabilities of these findings are unknown. Using real and simulated data that lack evolutionary optimization, we here report extremely high false-positive rates of ParTI. The errors arise from phylogenetic relationships or population structures of the organisms analyzed and the flexibility of data analysis in ParTI that is equivalent to p-hacking. Because these problems are virtually universal, our findings cast doubt on almost all ParTI-based results and suggest that reliably identifying Pareto fronts and archetypes from high-dimensional phenotypic data are currently generally difficult.

摘要

生物体在执行多项任务时面临权衡。确定使生物体适应性最大化的最优表型(或 Pareto 前沿),并推断相关任务,这有助于检验表型适应,并有助于描绘进化约束、权衡和关键适应性成分,因此具有广泛的兴趣。有人提出,可以通过拟合多面体(线、三角形、四面体等),从包括基因表达水平等分子表型在内的高维表型数据中识别 Pareto 前沿,最近为此目的引入了一个名为 ParTI 的程序。ParTI 已经从许多数据集(如达尔文雀的喙形态和人类肿瘤中的 mRNA 浓度)中确定了 Pareto 前沿,并推断出最适合单个任务(或原型)的表型,这意味着所涉及的特征存在进化优化。然而,这些发现的可靠性尚不清楚。使用缺乏进化优化的真实和模拟数据,我们在这里报告了 ParTI 的极高假阳性率。这些错误源于所分析的生物体的系统发育关系或种群结构,以及 ParTI 数据分析的灵活性,相当于 p 值操纵。由于这些问题几乎普遍存在,我们的发现对几乎所有基于 ParTI 的结果提出了质疑,并表明目前从高维表型数据中可靠地识别 Pareto 前沿和原型通常具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/627d/8042732/8d066737fc10/msaa330f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验