Computer Vision and Robotics Institute, Universitat de Girona, Girona, Spain.
Neuroinformatics. 2021 Jul;19(3):477-492. doi: 10.1007/s12021-020-09499-z. Epub 2021 Jan 2.
Brain atrophy quantification plays a fundamental role in neuroinformatics since it permits studying brain development and neurological disorders. However, the lack of a ground truth prevents testing the accuracy of longitudinal atrophy quantification methods. We propose a deep learning framework to generate longitudinal datasets by deforming T1-w brain magnetic resonance imaging scans as requested through segmentation maps. Our proposal incorporates a cascaded multi-path U-Net optimised with a multi-objective loss which allows its paths to generate different brain regions accurately. We provided our model with baseline scans and real follow-up segmentation maps from two longitudinal datasets, ADNI and OASIS, and observed that our framework could produce synthetic follow-up scans that matched the real ones (Total scans= 584; Median absolute error: 0.03 ± 0.02; Structural similarity index: 0.98 ± 0.02; Dice similarity coefficient: 0.95 ± 0.02; Percentage of brain volume change: 0.24 ± 0.16; Jacobian integration: 1.13 ± 0.05). Compared to two relevant works generating brain lesions using U-Nets and conditional generative adversarial networks (CGAN), our proposal outperformed them significantly in most cases (p < 0.01), except in the delineation of brain edges where the CGAN took the lead (Jacobian integration: Ours - 1.13 ± 0.05 vs CGAN - 1.00 ± 0.02; p < 0.01). We examined whether changes induced with our framework were detected by FAST, SPM, SIENA, SIENAX, and the Jacobian integration method. We observed that induced and detected changes were highly correlated (Adj. R > 0.86). Our preliminary results on harmonised datasets showed the potential of our framework to be applied to various data collections without further adjustment.
脑萎缩定量分析在神经信息学中起着至关重要的作用,因为它可以研究大脑发育和神经退行性疾病。然而,缺乏真实数据使得无法测试纵向脑萎缩定量方法的准确性。我们提出了一种深度学习框架,通过根据分割图请求对 T1-w 脑磁共振成像扫描进行变形来生成纵向数据集。我们的建议采用了级联多路径 U-Net,该网络使用多目标损失进行了优化,允许其路径准确地生成不同的脑区。我们为模型提供了基线扫描和来自两个纵向数据集(ADNI 和 OASIS)的真实随访分割图,并观察到我们的框架可以生成与真实扫描匹配的合成随访扫描(总扫描数=584;平均绝对误差:0.03 ± 0.02;结构相似性指数:0.98 ± 0.02;Dice 相似系数:0.95 ± 0.02;脑容量变化百分比:0.24 ± 0.16;雅可比积分:1.13 ± 0.05)。与使用 U-Nets 和条件生成对抗网络(CGAN)生成脑损伤的两项相关工作相比,我们的方案在大多数情况下(p < 0.01)明显优于它们,除了在脑边缘的勾画方面,CGAN 处于领先地位(雅可比积分:我们的方案 - 1.13 ± 0.05 与 CGAN - 1.00 ± 0.02;p < 0.01)。我们检查了我们的框架诱导的变化是否可以被 FAST、SPM、SIENA、SIENAX 和雅可比积分方法检测到。我们观察到诱导的和检测到的变化高度相关(调整后的 R > 0.86)。我们在协调数据集上的初步结果表明,我们的框架具有在无需进一步调整的情况下应用于各种数据集合的潜力。