Suppr超能文献

通过使用受光合作用启发的电子-质子转移介质提高热光催化CO转化活性。

Boosting thermo-photocatalytic CO conversion activity by using photosynthesis-inspired electron-proton-transfer mediators.

作者信息

Li Yingxuan, Hui Danping, Sun Yuqing, Wang Ying, Wu Zhijian, Wang Chuanyi, Zhao Jincai

机构信息

School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.

出版信息

Nat Commun. 2021 Jan 5;12(1):123. doi: 10.1038/s41467-020-20444-1.

Abstract

Natural photosynthesis proceeded by sequential water splitting and CO reduction reactions is an efficient strategy for CO conversion. Here, mimicking photosynthesis to boost CO-to-CO conversion is achieved by using plasmonic Bi as an electron-proton-transfer mediator. Electroreduction of HO with a Bi electrode simultaneously produces O and hydrogen-stored Bi (Bi-H). The obtained Bi-H is subsequently used to generate electron-proton pairs under light irradiation to reduce CO to CO; meanwhile, Bi-H recovers to Bi, completing the catalytic cycle. This two-step strategy avoids O separation and enables a CO production efficiency of 283.8 μmol g h without sacrificial reagents and cocatalysts, which is 9 times that on pristine Bi in H gas. Theoretical/experimental studies confirm that such excellent activity is attributed to the formed Bi-H intermediate that improves charge separation and reduces reaction barriers in CO reduction.

摘要

通过连续的水分解和CO还原反应进行的自然光合作用是一种高效的CO转化策略。在此,通过使用等离子体Bi作为电子-质子转移介质,实现了模拟光合作用以促进CO到CO的转化。用Bi电极对H₂O进行电还原同时产生O₂和储氢Bi(Bi-H)。随后,所得到的Bi-H在光照下用于产生电子-质子对以将CO还原为CO;同时,Bi-H恢复为Bi,从而完成催化循环。这种两步策略避免了O₂分离,并且在没有牺牲试剂和助催化剂的情况下实现了283.8 μmol g⁻¹ h⁻¹的CO生产效率,这是在H₂气体中原始Bi上的9倍。理论/实验研究证实,这种优异的活性归因于所形成的Bi-H中间体,其改善了电荷分离并降低了CO还原中的反应势垒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b00/7785748/1f97afd1af05/41467_2020_20444_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验