Suppr超能文献

感恩问卷-20项(G20):跨文化、心理测量与众包分析

Gratitude Questionnaire-20 Items (G20): A Cross-Cultural, Psychometric and Crowdsourcing Analysis.

作者信息

Bernabe-Valero Gloria, Blasco-Magraner José S, García-March Marianela R

机构信息

Research Team Mind, Emotion, and Behavior Lab, Catholic University of Valencia San Vicente Mártir, Valencia, Spain.

Colaborator Research Team Mind, Emotion, and Behavior Lab, University of Valencia, Valencia, Spain.

出版信息

Front Psychol. 2020 Dec 21;11:626330. doi: 10.3389/fpsyg.2020.626330. eCollection 2020.

Abstract

The use in psychology of crowdsourcing platforms as a method of data collection has been increasing in popularity because of its relative ease and versatility. Our goal is to adapt the Gratitude Questionnaire-20 Items (G20) to the English language by using data collected through a crowdsourcing platform. The G20 is a comprehensive instrument that takes in consideration the different basic processes of gratitude and assesses the construct's cognitive, evaluative, emotional, and behavioral processes. We test the psychometric properties of the English version of the G20 with a Prolific (ProA) user sample. We assess the adequacy of the G20 for the crowdsourcing population in its English version. A description of the characteristics of the participants is conducted. Reliability analyses reveal an optimal internal consistency of the adapted scale. The results are discussed from a cross-cultural vision of gratitude. We conclude that the Gratitude Questionnaire-20 Items (G20), adapted to English with an American sample, is a psychometrically strong instrument to measure gratitude using crowdsourcing platforms for data collection and, therefore, a reference and useful tool in future research.

摘要

由于相对简便且用途广泛,众包平台在心理学领域作为一种数据收集方法越来越受欢迎。我们的目标是通过众包平台收集的数据,将感恩问卷20项量表(G20)改编为英文版本。G20是一种综合工具,它考虑了感恩的不同基本过程,并评估该构念的认知、评价、情感和行为过程。我们用Prolific(ProA)用户样本测试了G20英文版本的心理测量特性。我们评估了G20英文版本对众包人群的适用性。对参与者的特征进行了描述。信度分析显示改编后的量表具有最佳的内部一致性。从感恩的跨文化视角对结果进行了讨论。我们得出结论,以美国样本改编为英文的感恩问卷20项量表(G20),是一种心理测量学上强有力的工具,可用于通过众包平台收集数据来测量感恩,因此是未来研究中的一个参考且有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ae8/7779484/20caaffa2ec0/fpsyg-11-626330-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验