Suppr超能文献

组织工程在肌肉骨骼再生和疾病建模中的应用。

Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling.

机构信息

Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA.

出版信息

Handb Exp Pharmacol. 2021;265:235-268. doi: 10.1007/164_2020_377.

Abstract

Musculoskeletal injuries and associated conditions are the leading cause of physical disability worldwide. The concept of tissue engineering has opened up novel approaches to repair musculoskeletal defects in a fast and/or efficient manner. Biomaterials, cells, and signaling molecules constitute the tissue engineering triad. In the past 40 years, significant progress has been made in developing and optimizing all three components, but only a very limited number of technologies have been successfully translated into clinical applications. A major limiting factor of this barrier to translation is the insufficiency of two-dimensional cell cultures and traditional animal models in informing the safety and efficacy of in-human applications. In recent years, microphysiological systems, often referred to as organ or tissue chips, generated according to tissue engineering principles, have been proposed as the next-generation drug testing models. This chapter aims to first review the current tissue engineering-based approaches that are being applied to fabricate and develop the individual critical elements involved in musculoskeletal organ/tissue chips. We next highlight the general strategy of generating musculoskeletal tissue chips and their potential in future regenerative medicine research. Exemplary microphysiological systems mimicking musculoskeletal tissues are described. With sufficient physiological accuracy and relevance, the human cell-derived, three-dimensional, multi-tissue systems have been used to model a number of orthopedic disorders and to test new treatments. We anticipate that the novel emerging tissue chip technology will continually reshape and improve our understanding of human musculoskeletal pathophysiology, ultimately accelerating the development of advanced pharmaceutics and regenerative therapies.

摘要

肌肉骨骼损伤和相关疾病是全球范围内导致身体残疾的主要原因。组织工程学的概念为快速和/或高效地修复肌肉骨骼缺陷开辟了新的途径。生物材料、细胞和信号分子构成了组织工程学的三要素。在过去的 40 年中,在开发和优化这三个组成部分方面已经取得了重大进展,但只有极少数技术成功转化为临床应用。阻碍这种转化的一个主要限制因素是二维细胞培养和传统动物模型在告知人类应用的安全性和有效性方面的不足。近年来,根据组织工程学原理设计的微生理系统,通常被称为器官或组织芯片,被提议作为下一代药物测试模型。本章旨在首先回顾目前正在应用于制造和开发肌肉骨骼器官/组织芯片中涉及的各个关键要素的基于组织工程学的方法。接下来,我们将重点介绍生成肌肉骨骼组织芯片的一般策略及其在未来再生医学研究中的潜力。描述了模拟肌肉骨骼组织的典型微生理系统。具有足够生理准确性和相关性的人源细胞衍生的三维多组织系统已被用于模拟多种骨科疾病,并测试新的治疗方法。我们预计,新兴的组织芯片技术将不断重塑和改善我们对人类肌肉骨骼病理生理学的理解,最终加速先进药物和再生疗法的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc4/8049527/2da2e7d23890/nihms-1690012-f0001.jpg

相似文献

4
[Biofabrication: new approaches for tissue regeneration].[生物制造:组织再生的新方法]
Handchir Mikrochir Plast Chir. 2018 Apr;50(2):93-100. doi: 10.1055/s-0043-124674. Epub 2018 Jan 29.
5
Next generation human skin constructs as advanced tools for drug development.下一代人造皮肤构建体作为药物开发的先进工具。
Exp Biol Med (Maywood). 2017 Nov;242(17):1657-1668. doi: 10.1177/1535370217712690. Epub 2017 Jun 7.
6
Gut bioengineering strategies for regenerative medicine.肠道生物工程策略在再生医学中的应用。
Am J Physiol Gastrointest Liver Physiol. 2021 Jan 1;320(1):G1-G11. doi: 10.1152/ajpgi.00206.2020. Epub 2020 Nov 11.
7
Bio-instructive materials for musculoskeletal regeneration.用于肌肉骨骼再生的生物指令材料。
Acta Biomater. 2019 Sep 15;96:20-34. doi: 10.1016/j.actbio.2019.07.014. Epub 2019 Jul 11.
8
Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.用于再生工程的可生物降解聚磷腈基共混物。
Regen Eng Transl Med. 2017 Mar;3(1):15-31. doi: 10.1007/s40883-016-0022-7. Epub 2017 Jan 30.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验