Suppr超能文献

分析和可视化挑战结果的方法和开源工具包。

Methods and open-source toolkit for analyzing and visualizing challenge results.

机构信息

Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany.

Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, 69120, Heidelberg, Germany.

出版信息

Sci Rep. 2021 Jan 27;11(1):2369. doi: 10.1038/s41598-021-82017-6.

Abstract

Grand challenges have become the de facto standard for benchmarking image analysis algorithms. While the number of these international competitions is steadily increasing, surprisingly little effort has been invested in ensuring high quality design, execution and reporting for these international competitions. Specifically, results analysis and visualization in the event of uncertainties have been given almost no attention in the literature. Given these shortcomings, the contribution of this paper is two-fold: (1) we present a set of methods to comprehensively analyze and visualize the results of single-task and multi-task challenges and apply them to a number of simulated and real-life challenges to demonstrate their specific strengths and weaknesses; (2) we release the open-source framework challengeR as part of this work to enable fast and wide adoption of the methodology proposed in this paper. Our approach offers an intuitive way to gain important insights into the relative and absolute performance of algorithms, which cannot be revealed by commonly applied visualization techniques. This is demonstrated by the experiments performed in the specific context of biomedical image analysis challenges. Our framework could thus become an important tool for analyzing and visualizing challenge results in the field of biomedical image analysis and beyond.

摘要

重大挑战已成为图像分析算法基准测试的事实上的标准。虽然这些国际竞赛的数量在稳步增加,但令人惊讶的是,几乎没有投入精力来确保这些国际竞赛的高质量设计、执行和报告。具体来说,在存在不确定性的情况下,结果分析和可视化在文献中几乎没有得到关注。鉴于这些缺点,本文的贡献有两个方面:(1)我们提出了一组方法来全面分析和可视化单任务和多任务挑战的结果,并将其应用于许多模拟和实际挑战,以展示它们的具体优势和劣势;(2)我们作为这项工作的一部分发布了开源框架 challengeR,以实现所提出方法的快速广泛采用。我们的方法提供了一种直观的方式,可以深入了解算法的相对和绝对性能,而这是通常应用的可视化技术无法揭示的。这通过在生物医学图像分析挑战的特定上下文中进行的实验得到了证明。因此,我们的框架可以成为分析和可视化生物医学图像分析领域及其他领域挑战结果的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c97e/7841186/2080c777e02a/41598_2021_82017_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验