Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China.
Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA.
Neuron. 2021 Mar 17;109(6):1013-1028.e9. doi: 10.1016/j.neuron.2021.01.014. Epub 2021 Feb 5.
Mental experiences can become long-term memories if the hippocampal activity patterns that encode them are broadcast during network oscillations. The activity of inhibitory neurons is essential for generating these neural oscillations, but molecular control of this dynamic process during learning remains unknown. Here, we show that hippocampal oscillatory strength positively correlates with excitatory monosynaptic drive onto inhibitory neurons (E→I) in freely behaving mice. To establish a causal relationship between them, we identified γCaMKII as the long-sought mediator of long-term potentiation for E→I synapses (LTP), which enabled the genetic manipulation of experience-dependent E→I synaptic input/plasticity. Deleting γCaMKII in parvalbumin interneurons selectively eliminated LTP and disrupted experience-driven strengthening in theta and gamma rhythmicity. Behaviorally, this manipulation impaired long-term memory, for which the kinase activity of γCaMKII was required. Taken together, our data suggest that E→I synaptic plasticity, exemplified by LTP, plays a gatekeeping role in tuning experience-dependent brain rhythms and mnemonic function.
如果编码它们的海马体活动模式在网络振荡期间传播,那么心理体验就可以成为长期记忆。抑制性神经元的活动对于产生这些神经振荡至关重要,但学习过程中这种动态过程的分子控制仍然未知。在这里,我们发现在自由活动的小鼠中,海马体振荡强度与抑制性神经元上的兴奋性单突触驱动(E→I)呈正相关。为了在它们之间建立因果关系,我们确定γCaMKII 是 E→I 突触(LTP)的长期增强作用的长期寻求的介质,这使得能够对经验依赖性 E→I 突触输入/可塑性进行遗传操作。在 Parvalbumin 中间神经元中删除 γCaMKII 选择性地消除了 LTP,并破坏了θ和γ节律驱动的经验性增强。在行为上,这种操作会损害长期记忆,而 γCaMKII 的激酶活性对此有要求。总之,我们的数据表明,以 LTP 为代表的 E→I 突触可塑性在调节经验依赖性脑节律和记忆功能方面起着关键作用。