Suppr超能文献

抑制性中间神经元的突触可塑性对海马节律和记忆的门控作用。

Gating of hippocampal rhythms and memory by synaptic plasticity in inhibitory interneurons.

机构信息

Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China.

Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Neuron. 2021 Mar 17;109(6):1013-1028.e9. doi: 10.1016/j.neuron.2021.01.014. Epub 2021 Feb 5.

Abstract

Mental experiences can become long-term memories if the hippocampal activity patterns that encode them are broadcast during network oscillations. The activity of inhibitory neurons is essential for generating these neural oscillations, but molecular control of this dynamic process during learning remains unknown. Here, we show that hippocampal oscillatory strength positively correlates with excitatory monosynaptic drive onto inhibitory neurons (E→I) in freely behaving mice. To establish a causal relationship between them, we identified γCaMKII as the long-sought mediator of long-term potentiation for E→I synapses (LTP), which enabled the genetic manipulation of experience-dependent E→I synaptic input/plasticity. Deleting γCaMKII in parvalbumin interneurons selectively eliminated LTP and disrupted experience-driven strengthening in theta and gamma rhythmicity. Behaviorally, this manipulation impaired long-term memory, for which the kinase activity of γCaMKII was required. Taken together, our data suggest that E→I synaptic plasticity, exemplified by LTP, plays a gatekeeping role in tuning experience-dependent brain rhythms and mnemonic function.

摘要

如果编码它们的海马体活动模式在网络振荡期间传播,那么心理体验就可以成为长期记忆。抑制性神经元的活动对于产生这些神经振荡至关重要,但学习过程中这种动态过程的分子控制仍然未知。在这里,我们发现在自由活动的小鼠中,海马体振荡强度与抑制性神经元上的兴奋性单突触驱动(E→I)呈正相关。为了在它们之间建立因果关系,我们确定γCaMKII 是 E→I 突触(LTP)的长期增强作用的长期寻求的介质,这使得能够对经验依赖性 E→I 突触输入/可塑性进行遗传操作。在 Parvalbumin 中间神经元中删除 γCaMKII 选择性地消除了 LTP,并破坏了θ和γ节律驱动的经验性增强。在行为上,这种操作会损害长期记忆,而 γCaMKII 的激酶活性对此有要求。总之,我们的数据表明,以 LTP 为代表的 E→I 突触可塑性在调节经验依赖性脑节律和记忆功能方面起着关键作用。

相似文献

5
Regulation of Hippocampal Memory by mTORC1 in Somatostatin Interneurons.调控海马体记忆的 mTORC1 在生长抑素中间神经元中。
J Neurosci. 2019 Oct 23;39(43):8439-8456. doi: 10.1523/JNEUROSCI.0728-19.2019. Epub 2019 Sep 13.

引用本文的文献

本文引用的文献

8
Hippocampal GABAergic Inhibitory Interneurons.海马体γ-氨基丁酸能抑制性中间神经元
Physiol Rev. 2017 Oct 1;97(4):1619-1747. doi: 10.1152/physrev.00007.2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验