Suppr超能文献

可解释的多模态融合网络揭示大脑认知的机制。

Interpretable Multimodal Fusion Networks Reveal Mechanisms of Brain Cognition.

出版信息

IEEE Trans Med Imaging. 2021 May;40(5):1474-1483. doi: 10.1109/TMI.2021.3057635. Epub 2021 Apr 30.

Abstract

The combination of multimodal imaging and genomics provides a more comprehensive way for the study of mental illnesses and brain functions. Deep network-based data fusion models have been developed to capture their complex associations, resulting in improved diagnosis of diseases. However, deep learning models are often difficult to interpret, bringing about challenges for uncovering biological mechanisms using these models. In this work, we develop an interpretable multimodal fusion model to perform automated diagnosis and result interpretation simultaneously. We name it Grad-CAM guided convolutional collaborative learning (gCAM-CCL), which is achieved by combining intermediate feature maps with gradient-based weights. The gCAM-CCL model can generate interpretable activation maps to quantify pixel-level contributions of the input features. Moreover, the estimated activation maps are class-specific, which can therefore facilitate the identification of biomarkers underlying different groups. We validate the gCAM-CCL model on a brain imaging-genetic study, and demonstrate its applications to both the classification of cognitive function groups and the discovery of underlying biological mechanisms. Specifically, our analysis results suggest that during task-fMRI scans, several object recognition related regions of interests (ROIs) are activated followed by several downstream encoding ROIs. In addition, the high cognitive group may have stronger neurotransmission signaling while the low cognitive group may have problems in brain/neuron development due to genetic variations.

摘要

多模态成像和基因组学的结合为研究精神疾病和大脑功能提供了更全面的方法。已经开发了基于深度网络的数据融合模型来捕捉它们的复杂关联,从而提高疾病的诊断能力。然而,深度学习模型通常难以解释,这给利用这些模型揭示生物机制带来了挑战。在这项工作中,我们开发了一种可解释的多模态融合模型,以同时进行自动诊断和结果解释。我们将其命名为基于梯度的卷积协同学习的梯度激活映射引导(Grad-CAM guided convolutional collaborative learning,gCAM-CCL),它通过将中间特征映射与基于梯度的权重相结合来实现。gCAM-CCL 模型可以生成可解释的激活图,以量化输入特征的像素级贡献。此外,估计的激活图是特定于类别的,因此可以方便地识别不同组的潜在生物标志物。我们在脑成像-遗传研究中验证了 gCAM-CCL 模型,并展示了其在认知功能组分类和潜在生物学机制发现方面的应用。具体来说,我们的分析结果表明,在任务 fMRI 扫描期间,几个与物体识别相关的感兴趣区域(ROI)被激活,随后是几个下游编码 ROI。此外,高认知组可能具有更强的神经传递信号,而低认知组可能由于遗传变异而在大脑/神经元发育方面存在问题。

相似文献

1
Interpretable Multimodal Fusion Networks Reveal Mechanisms of Brain Cognition.
IEEE Trans Med Imaging. 2021 May;40(5):1474-1483. doi: 10.1109/TMI.2021.3057635. Epub 2021 Apr 30.
2
Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.
J Neurosci Methods. 2021 Apr 1;353:109098. doi: 10.1016/j.jneumeth.2021.109098. Epub 2021 Feb 11.
3
Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
Eur Radiol. 2019 Jul;29(7):3348-3357. doi: 10.1007/s00330-019-06214-8. Epub 2019 May 15.
4
SSPNet: An interpretable 3D-CNN for classification of schizophrenia using phase maps of resting-state complex-valued fMRI data.
Med Image Anal. 2022 Jul;79:102430. doi: 10.1016/j.media.2022.102430. Epub 2022 Mar 24.
6
Ensemble Manifold Regularized Multi-Modal Graph Convolutional Network for Cognitive Ability Prediction.
IEEE Trans Biomed Eng. 2021 Dec;68(12):3564-3573. doi: 10.1109/TBME.2021.3077875. Epub 2021 Nov 19.
7
What Does Deep Learning See? Insights From a Classifier Trained to Predict Contrast Enhancement Phase From CT Images.
AJR Am J Roentgenol. 2018 Dec;211(6):1184-1193. doi: 10.2214/AJR.18.20331. Epub 2018 Nov 7.
8
A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks.
Neuroimage. 2018 Sep;178:183-197. doi: 10.1016/j.neuroimage.2018.05.049. Epub 2018 May 21.
9
MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
Comput Biol Med. 2022 Sep;148:105823. doi: 10.1016/j.compbiomed.2022.105823. Epub 2022 Jul 6.
10
MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson's disease diagnosis.
Comput Biol Med. 2023 Jan;152:106308. doi: 10.1016/j.compbiomed.2022.106308. Epub 2022 Nov 24.

引用本文的文献

1
Applications of interpretable deep learning in neuroimaging: A comprehensive review.
Imaging Neurosci (Camb). 2024 Jul 12;2. doi: 10.1162/imag_a_00214. eCollection 2024.
5
ImageNomer: Description of a functional connectivity and omics analysis tool and case study identifying a race confound.
Neuroimage Rep. 2023 Dec;3(4). doi: 10.1016/j.ynirp.2023.100191. Epub 2023 Nov 7.
6
Interpretable Cognitive Ability Prediction: A Comprehensive Gated Graph Transformer Framework for Analyzing Functional Brain Networks.
IEEE Trans Med Imaging. 2024 Apr;43(4):1568-1578. doi: 10.1109/TMI.2023.3343365. Epub 2024 Apr 3.
7
Applications for Deep Learning in Epilepsy Genetic Research.
Int J Mol Sci. 2023 Sep 27;24(19):14645. doi: 10.3390/ijms241914645.
8
A joint multi-modal learning method for early-stage knee osteoarthritis disease classification.
Heliyon. 2023 Apr 13;9(4):e15461. doi: 10.1016/j.heliyon.2023.e15461. eCollection 2023 Apr.
9
Latent Similarity Identifies Important Functional Connections for Phenotype Prediction.
IEEE Trans Biomed Eng. 2023 Jun;70(6):1979-1989. doi: 10.1109/TBME.2022.3232964. Epub 2023 May 19.

本文引用的文献

1
Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises.
Biol Psychiatry. 2020 Dec 1;88(11):818-828. doi: 10.1016/j.biopsych.2020.02.016. Epub 2020 Feb 27.
2
Deep Collaborative Learning With Application to the Study of Multimodal Brain Development.
IEEE Trans Biomed Eng. 2019 Dec;66(12):3346-3359. doi: 10.1109/TBME.2019.2904301. Epub 2019 Mar 13.
3
Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk.
Nat Genet. 2018 Aug;50(8):1171-1179. doi: 10.1038/s41588-018-0160-6. Epub 2018 Jul 16.
5
Integration of SNPs-FMRI-methylation data with sparse multi-CCA for schizophrenia study.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3310-3313. doi: 10.1109/EMBC.2016.7591436.
6
DeepChrome: deep-learning for predicting gene expression from histone modifications.
Bioinformatics. 2016 Sep 1;32(17):i639-i648. doi: 10.1093/bioinformatics/btw427.
7
Next-generation genotype imputation service and methods.
Nat Genet. 2016 Oct;48(10):1284-1287. doi: 10.1038/ng.3656. Epub 2016 Aug 29.
10
Correspondence between fMRI and SNP data by group sparse canonical correlation analysis.
Med Image Anal. 2014 Aug;18(6):891-902. doi: 10.1016/j.media.2013.10.010. Epub 2013 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验