Lama Ramesh Kumar, Kwon Goo-Rak
The Alzheimer's Disease Neuroimaging Initiative, Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea.
Front Neurosci. 2021 Feb 5;15:605115. doi: 10.3389/fnins.2021.605115. eCollection 2021.
Recent studies suggest the brain functional connectivity impairment is the early event occurred in case of Alzheimer's disease (AD) as well as mild cognitive impairment (MCI). We model the brain as a graph based network to study these impairment. In this paper, we present a new diagnosis approach using graph theory based features from functional magnetic resonance (fMR) images to discriminate AD, MCI, and healthy control (HC) subjects using different classification techniques. These techniques include linear support vector machine (LSVM), and regularized extreme learning machine (RELM). We used pairwise Pearson's correlation-based functional connectivity to construct the brain network. We compare the classification performance of brain network using Alzheimer's disease neuroimaging initiative (ADNI) datasets. Node2vec graph embedding approach is employed to convert graph features to feature vectors. Experimental results show that the SVM with LASSO feature selection method generates better classification accuracy compared to other classification technique.
最近的研究表明,大脑功能连接受损是阿尔茨海默病(AD)以及轻度认知障碍(MCI)患者早期出现的情况。我们将大脑建模为基于图的网络来研究这些损伤。在本文中,我们提出了一种新的诊断方法,利用基于图论的功能磁共振(fMR)图像特征,采用不同的分类技术来区分AD、MCI和健康对照(HC)受试者。这些技术包括线性支持向量机(LSVM)和正则化极限学习机(RELM)。我们使用基于成对皮尔逊相关性的功能连接来构建大脑网络。我们使用阿尔茨海默病神经影像倡议(ADNI)数据集比较大脑网络的分类性能。采用Node2vec图嵌入方法将图特征转换为特征向量。实验结果表明,与其他分类技术相比,采用LASSO特征选择方法的支持向量机具有更好的分类准确率。