Suppr超能文献

基于微细胞的真菌 RNAi 递送来实现可持续的作物保护。

Minicell-based fungal RNAi delivery for sustainable crop protection.

机构信息

Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, 22602, USA.

AgroSpheres, INC., 1180 Seminole Trail, STE 100, Charlottesville, VA, 22901, USA.

出版信息

Microb Biotechnol. 2021 Jul;14(4):1847-1856. doi: 10.1111/1751-7915.13699. Epub 2021 Feb 24.

Abstract

Spray-induced gene silencing (SIGS) using topical dsRNA applications has risen as a promising, target-specific, and environmentally friendly disease management strategy against phytopathogenic fungi. However, dsRNA stability, efficacy, and scalability are still the main constraints facing SIGS broader application. Here we show that Escherichia coli-derived anucleated minicells can be utilized as a cost-effective, scalable platform for dsRNA production and encapsulation. We demonstrated that minicell-encapsulated dsRNA (ME-dsRNA) was shielded from RNase degradation and stabilized on strawberry surfaces, allowing dsRNA persistence in field-like conditions. ME-dsRNAs targeting chitin synthase class III (Chs3a, Chs3b) and DICER-like proteins (DCL1 and DCL2) genes of Botryotinia fuckeliana selectively knocked-down the target genes and led to significant fungal growth inhibition in vitro. We also observed a compensatory relationship between DCL1 and DCL2 gene transcripts, where the silencing of one gene upregulated the expression of the other. Contrary to naked-dsRNAs, ME-dsRNAs halted disease progression in strawberries for 12 days under greenhouse conditions. These results elucidate the potential of ME-dsRNAs to enable the commercial application of RNAi-based, species-specific biocontrols comparable in efficacy to conventional synthetics. ME-dsRNAs offer a platform that can readily be translated to large-scale production and deployed in open-field applications to control grey mould in strawberries.

摘要

利用局部双链 RNA(dsRNA)应用的喷雾诱导基因沉默(SIGS)已经成为一种有前途的、针对特定目标和环保的病害管理策略,可用于防治植物病原真菌。然而,dsRNA 的稳定性、功效和可扩展性仍然是 SIGS 更广泛应用的主要限制因素。在这里,我们展示了大肠杆菌无核小细胞可以被用作一种具有成本效益、可扩展的 dsRNA 生产和封装平台。我们证明了被小细胞包裹的 dsRNA(ME-dsRNA)可以免受 RNA 酶的降解,并在草莓表面稳定存在,从而使 dsRNA 在类似于田间的条件下保持持久。针对 Botryotinia fuckeliana 的几丁质合酶 III(Chs3a、Chs3b)和 DICER 样蛋白(DCL1 和 DCL2)基因的 ME-dsRNA 靶向物选择性地敲低了靶基因,并导致在体外显著抑制真菌生长。我们还观察到 DCL1 和 DCL2 基因转录物之间存在补偿关系,其中一个基因的沉默会上调另一个基因的表达。与裸露的 dsRNA 不同,ME-dsRNA 在温室条件下可将草莓病害进展延缓 12 天。这些结果阐明了 ME-dsRNA 具有使基于 RNAi 的、针对特定物种的生物防治在功效上可与传统合成物相媲美的商业应用的潜力。ME-dsRNA 提供了一个平台,可以很容易地转化为大规模生产,并在大田应用中用于控制草莓灰霉病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cc8/8313293/c577ab35cfb8/MBT2-14-1847-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验