Suppr超能文献

通过人类流动数据识别 COVID-19 下的超级传播环境。

Identification of superspreading environment under COVID-19 through human mobility data.

机构信息

Department of Geography, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong.

Institute of Transport Studies, The University of Hong Kong, Pok Fu Lam, Hong Kong.

出版信息

Sci Rep. 2021 Feb 25;11(1):4699. doi: 10.1038/s41598-021-84089-w.

Abstract

COVID-19 reaffirms the vital role of superspreaders in a pandemic. We propose to broaden the research on superspreaders through integrating human mobility data and geographical factors to identify superspreading environment. Six types of popular public facilities were selected: bars, shopping centres, karaoke/cinemas, mega shopping malls, public libraries, and sports centres. A historical dataset on mobility was used to calculate the generalized activity space and space-time prism of individuals during a pre-pandemic period. Analysis of geographic interconnections of public facilities yielded locations by different classes of potential spatial risk. These risk surfaces were weighed and integrated into a "risk map of superspreading environment" (SE-risk map) at the city level. Overall, the proposed method can estimate empirical hot spots of superspreading environment with statistical accuracy. The SE-risk map of Hong Kong can pre-identify areas that overlap with the actual disease clusters of bar-related transmission. Our study presents first-of-its-kind research that combines data on facility location and human mobility to identify superspreading environment. The resultant SE-risk map steers the investigation away from pure human focus to include geographic environment, thereby enabling more differentiated non-pharmaceutical interventions and exit strategies to target some places more than others when complete city lockdown is not practicable.

摘要

COVID-19 再次证实了超级传播者在大流行中的重要作用。我们建议通过整合人类流动数据和地理因素来拓宽对超级传播者的研究,以识别超级传播环境。选择了六种流行的公共设施:酒吧、购物中心、卡拉 OK/电影院、大型购物中心、公共图书馆和体育中心。利用历史移动性数据集计算了个人在大流行前期间的广义活动空间和时空棱柱体。对公共设施的地理互联性分析得出了不同潜在空间风险等级的位置。对这些风险表面进行加权,并整合到城市级别的“超级传播环境风险图”(SE-风险图)中。总体而言,所提出的方法可以用统计精度来估计超级传播环境的经验热点。香港的 SE-风险图可以预先识别与酒吧相关传播的实际疾病集群重叠的区域。我们的研究首次结合了设施位置和人类流动数据来识别超级传播环境。由此产生的 SE-风险图使调查从纯粹的人类焦点转向包括地理环境,从而能够在完全封锁城市不可行时,针对某些地方比其他地方采取更具差异化的非药物干预和退出策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc0d/7907097/be959fd22ee9/41598_2021_84089_Fig1_HTML.jpg

相似文献

1
Identification of superspreading environment under COVID-19 through human mobility data.
Sci Rep. 2021 Feb 25;11(1):4699. doi: 10.1038/s41598-021-84089-w.
2
Spatial risk for a superspreading environment: Insights from six urban facilities in six global cities across four continents.
Front Public Health. 2023 Apr 5;11:1128889. doi: 10.3389/fpubh.2023.1128889. eCollection 2023.
3
Association between meteorological variations and the superspreading potential of SARS-CoV-2 infections.
Environ Int. 2024 Jun;188:108762. doi: 10.1016/j.envint.2024.108762. Epub 2024 May 19.
5
A statistical framework for tracking the time-varying superspreading potential of COVID-19 epidemic.
Epidemics. 2023 Mar;42:100670. doi: 10.1016/j.epidem.2023.100670. Epub 2023 Jan 24.
6
Impact of mobility restriction in COVID-19 superspreading events using agent-based model.
PLoS One. 2021 Mar 18;16(3):e0248708. doi: 10.1371/journal.pone.0248708. eCollection 2021.
8
Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong.
Nat Med. 2020 Nov;26(11):1714-1719. doi: 10.1038/s41591-020-1092-0. Epub 2020 Sep 17.
10
Estimating the Epidemic Size of Superspreading Coronavirus Outbreaks in Real Time: Quantitative Study.
JMIR Public Health Surveill. 2024 Feb 12;10:e46687. doi: 10.2196/46687.

引用本文的文献

1
Time-series modeling of epidemics in complex populations: Detecting changes in incidence volatility over time.
PLoS Comput Biol. 2025 Jul 11;21(7):e1012882. doi: 10.1371/journal.pcbi.1012882. eCollection 2025 Jul.
4
Spatiotemporal hierarchical Bayesian analysis to identify factors associated with COVID-19 in suburban areas in Colombia.
Heliyon. 2024 Apr 24;10(9):e30182. doi: 10.1016/j.heliyon.2024.e30182. eCollection 2024 May 15.
5
Spatial risk for a superspreading environment: Insights from six urban facilities in six global cities across four continents.
Front Public Health. 2023 Apr 5;11:1128889. doi: 10.3389/fpubh.2023.1128889. eCollection 2023.
6
Optimized workplace risk mitigation measures for SARS-CoV-2 in 2022.
Sci Rep. 2023 Feb 16;13(1):2779. doi: 10.1038/s41598-023-29087-w.
7
Dynamics of Microbial Community and Potential Microbial Pollutants in Shopping Malls.
mSystems. 2023 Feb 23;8(1):e0057622. doi: 10.1128/msystems.00576-22. Epub 2023 Jan 5.
8
High-Speed railways and the spread of Covid-19.
Travel Behav Soc. 2023 Jan;30:1-10. doi: 10.1016/j.tbs.2022.08.001. Epub 2022 Aug 8.
9
Responsiveness of open innovation to COVID-19 pandemic: The case of data for good.
PLoS One. 2022 Apr 26;17(4):e0267100. doi: 10.1371/journal.pone.0267100. eCollection 2022.

本文引用的文献

1
Super-spreading events initiated the exponential growth phase of COVID-19 with ℛ higher than initially estimated.
R Soc Open Sci. 2020 Sep 23;7(9):200786. doi: 10.1098/rsos.200786. eCollection 2020 Sep.
3
Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe.
Lancet. 2020 Nov 7;396(10261):1525-1534. doi: 10.1016/S0140-6736(20)32007-9. Epub 2020 Sep 24.
4
Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong.
Nat Med. 2020 Nov;26(11):1714-1719. doi: 10.1038/s41591-020-1092-0. Epub 2020 Sep 17.
6
Successful Elimination of Covid-19 Transmission in New Zealand.
N Engl J Med. 2020 Aug 20;383(8):e56. doi: 10.1056/NEJMc2025203. Epub 2020 Aug 7.
8
Unlocking UK COVID-19 policy.
Lancet Public Health. 2020 Jul;5(7):e362-e363. doi: 10.1016/S2468-2667(20)30135-3. Epub 2020 Jun 2.
9
Inferring super-spreading from transmission clusters of COVID-19 in Hong Kong, Japan, and Singapore.
J Hosp Infect. 2020 Aug;105(4):682-685. doi: 10.1016/j.jhin.2020.05.027. Epub 2020 May 22.
10
Effect of non-pharmaceutical interventions to contain COVID-19 in China.
Nature. 2020 Sep;585(7825):410-413. doi: 10.1038/s41586-020-2293-x. Epub 2020 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验