文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估 EEG 数据驱动的机器学习在创伤性脑损伤分类中的性能。

Evaluating Performance of EEG Data-Driven Machine Learning for Traumatic Brain Injury Classification.

出版信息

IEEE Trans Biomed Eng. 2021 Nov;68(11):3205-3216. doi: 10.1109/TBME.2021.3062502. Epub 2021 Oct 19.


DOI:10.1109/TBME.2021.3062502
PMID:33635785
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9513823/
Abstract

OBJECTIVES: Big data analytics can potentially benefit the assessment and management of complex neurological conditions by extracting information that is difficult to identify manually. In this study, we evaluated the performance of commonly used supervised machine learning algorithms in the classification of patients with traumatic brain injury (TBI) history from those with stroke history and/or normal EEG. METHODS: Support vector machine (SVM) and K-nearest neighbors (KNN) models were generated with a diverse feature set from Temple EEG Corpus for both two-class classification of patients with TBI history from normal subjects and three-class classification of TBI, stroke and normal subjects. RESULTS: For two-class classification, an accuracy of 0.94 was achieved in 10-fold cross validation (CV), and 0.76 in independent validation (IV). For three-class classification, 0.85 and 0.71 accuracy were reached in CV and IV respectively. Overall, linear discriminant analysis (LDA) feature selection and SVM models consistently performed well in both CV and IV and for both two-class and three-class classification. Compared to normal control, both TBI and stroke patients showed an overall reduction in coherence and relative PSD in delta frequency, and an increase in higher frequency (alpha, mu, beta and gamma) power. But stroke patients showed a greater degree of change and had additional global decrease in theta power. CONCLUSIONS: Our study suggests that EEG data-driven machine learning can be a useful tool for TBI classification. SIGNIFICANCE: Our study provides preliminary evidence that EEG ML algorithm can potentially provide specificity to separate different neurological conditions.

摘要

目的:大数据分析通过提取手动难以识别的信息,有可能有助于评估和管理复杂的神经状况。在这项研究中,我们评估了常用的监督机器学习算法在从有中风病史和/或正常脑电图的患者中分类有创伤性脑损伤(TBI)病史患者的表现。

方法:使用 Temple EEG 语料库中的各种特征集生成支持向量机(SVM)和 K-最近邻(KNN)模型,用于对有 TBI 病史的患者与正常受试者进行两分类,以及对 TBI、中风和正常受试者进行三分类。

结果:对于两分类,在 10 折交叉验证(CV)中达到了 0.94 的准确率,在独立验证(IV)中达到了 0.76。对于三分类,在 CV 和 IV 中分别达到了 0.85 和 0.71 的准确率。总体而言,线性判别分析(LDA)特征选择和 SVM 模型在 CV 和 IV 中以及两分类和三分类中均表现良好。与正常对照组相比,TBI 和中风患者的 delta 频带相干性和相对 PSD 均整体降低,高频(alpha、mu、beta 和 gamma)功率增加。但中风患者的变化程度更大,并且还伴有 theta 功率的全局降低。

结论:我们的研究表明,EEG 数据驱动的机器学习可以成为 TBI 分类的有用工具。

意义:我们的研究初步表明,EEG ML 算法有可能提供特异性以区分不同的神经状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/0b66f4fd1923/nihms-1833746-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/9d62b63727d3/nihms-1833746-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/8f32271e60b7/nihms-1833746-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/840eb459391d/nihms-1833746-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/ea9ab5550721/nihms-1833746-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/b1083f6337d9/nihms-1833746-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/0b66f4fd1923/nihms-1833746-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/9d62b63727d3/nihms-1833746-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/8f32271e60b7/nihms-1833746-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/840eb459391d/nihms-1833746-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/ea9ab5550721/nihms-1833746-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/b1083f6337d9/nihms-1833746-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1238/9513823/0b66f4fd1923/nihms-1833746-f0006.jpg

相似文献

[1]
Evaluating Performance of EEG Data-Driven Machine Learning for Traumatic Brain Injury Classification.

IEEE Trans Biomed Eng. 2021-11

[2]
Investigation of Machine Learning Approaches for Traumatic Brain Injury Classification via EEG Assessment in Mice.

Sensors (Basel). 2020-4-4

[3]
A Comprehensive Machine-Learning-Based Software Pipeline to Classify EEG Signals: A Case Study on PNES vs. Control Subjects.

Sensors (Basel). 2020-2-24

[4]
Evaluation of Machine Learning Algorithms for Classification of Visual Stimulation-Induced EEG Signals in 2D and 3D VR Videos.

Brain Sci. 2025-1-16

[5]
Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks.

Sensors (Basel). 2024-5-22

[6]
Resting-State EEG Signal for Major Depressive Disorder Detection: A Systematic Validation on a Large and Diverse Dataset.

Biosensors (Basel). 2021-12-6

[7]
Machine Learning Approach for Music Familiarity Classification with Single-Channel EEG.

Annu Int Conf IEEE Eng Med Biol Soc. 2024-7

[8]
Comparison of subject-independent and subject-specific EEG-based BCI using LDA and SVM classifiers.

Med Biol Eng Comput. 2023-3

[9]
Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.

J Stroke Cerebrovasc Dis. 2021-10

[10]
EEG rhythm based emotion recognition using multivariate decomposition and ensemble machine learning classifier.

J Neurosci Methods. 2023-6-1

引用本文的文献

[1]
Neural correlates of β-lactam exposure in intensive care unit patients: an observational, prospective cohort study.

J Neurol. 2025-4-7

[2]
Using artificial intelligence to optimize anti-seizure treatment and EEG-guided decisions in severe brain injury.

Neurotherapeutics. 2025-1

[3]
A Machine Learning Approach to Classifying EEG Data Collected with or without Haptic Feedback during a Simulated Drilling Task.

Brain Sci. 2024-8-31

[4]
Recognition of regions of stroke injury using multi-modal frequency features of electroencephalogram.

Front Neurosci. 2024-6-10

[5]
EEG classification of traumatic brain injury and stroke from a nonspecific population using neural networks.

PLOS Digit Health. 2023-7-6

[6]
Henry gas solubility optimization double machine learning classifier for neurosurgical patients.

PLoS One. 2023

[7]
Identification of chronic mild traumatic brain injury using resting state functional MRI and machine learning techniques.

Front Neurosci. 2023-1-9

[8]
Traumatic Brain Injury (TBI) Detection: Past, Present, and Future.

Biomedicines. 2022-10-3

本文引用的文献

[1]
Neurophysiological Correlates of Concussion: Deep Learning for Clinical Assessment.

Sci Rep. 2019-11-22

[2]
Longitudinal Functional Assessment of Brain Injury Induced by High-Intensity Ultrasound Pulse Sequences.

Sci Rep. 2019-10-29

[3]
Consistency of quantitative electroencephalography features in a large clinical data set.

J Neural Eng. 2019-11-12

[4]
Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury.

Clin Neurophysiol. 2019-7-25

[5]
EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

Neurobiol Sleep Circadian Rhythms. 2016-7-1

[6]
Quantitative EEG Biomarkers for Mild Traumatic Brain Injury.

J Clin Neurophysiol. 2019-7

[7]
Objective Classification of mTBI Using Machine Learning on a Combination of Frontopolar Electroencephalography Measurements and Self-reported Symptoms.

Sports Med Open. 2019-4-18

[8]
Deep learning for electroencephalogram (EEG) classification tasks: a review.

J Neural Eng. 2019-2-26

[9]
Automatic Human Sleep Stage Scoring Using Deep Neural Networks.

Front Neurosci. 2018-11-6

[10]
Big Data in traumatic brain injury; promise and challenges.

Concussion. 2017-7-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索