Suppr超能文献

刺突依赖性 SARS-CoV-2 致病性与 TMPRSS2 相关。

Spiking dependence of SARS-CoV-2 pathogenicity on TMPRSS2.

机构信息

PsiMega2 (Pvt.) Ltd., Islamabad, Pakistan.

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.

出版信息

J Med Virol. 2021 Jul;93(7):4205-4218. doi: 10.1002/jmv.26911. Epub 2021 Mar 18.

Abstract

Epidemiological data shows a discrepancy in COVID-19 susceptibility and outcomes with some regions being more heavily affected than others. However, the factors that determine host susceptibility and pathogenicity remain elusive. An increasing number of publications highlight the role of Transmembrane Serine Protease 2 (TMPRSS2) in the susceptibility of the host cell to SARS-CoV-2. Cleavage of viral spike protein via the host cell's TMPRSS2 enzyme activity mediates viral entry into the host cell. The enzyme synthesis is regulated by the TMPRSS2 gene, which has also been implicated in the entry mechanisms of previously reported Coronavirus infections. In this review, we have investigated the pathogenicity of SARS-CoV-2 and disease susceptibility dependence on the TMPRSS2 gene as expressed in various population groups. We further discuss how the differential expression of this gene in various ethnic groups can affect the SARS-CoV-2 infection and Coronavirus disease (COVID)-19 outcomes. Moreover, promising new TMPRSS2 protease blockers and inhibitors are discussed for COVID-19 treatment.

摘要

流行病学数据显示,COVID-19 在不同地区的易感性和结果存在差异,有些地区比其他地区受到的影响更严重。然而,决定宿主易感性和致病性的因素仍然难以确定。越来越多的出版物强调了跨膜丝氨酸蛋白酶 2(TMPRSS2)在宿主细胞对 SARS-CoV-2 的易感性中的作用。通过宿主细胞的 TMPRSS2 酶活性切割病毒刺突蛋白,介导病毒进入宿主细胞。该酶的合成受 TMPRSS2 基因调控,该基因也与先前报道的冠状病毒感染的进入机制有关。在这篇综述中,我们研究了 SARS-CoV-2 的致病性以及宿主对 TMPRSS2 基因的易感性依赖性,该基因在不同人群中表达。我们进一步讨论了该基因在不同种族群体中的差异表达如何影响 SARS-CoV-2 感染和冠状病毒病(COVID-19)的结果。此外,还讨论了有前途的新型 TMPRSS2 蛋白酶阻滞剂和抑制剂在 COVID-19 治疗中的应用。

相似文献

1
Spiking dependence of SARS-CoV-2 pathogenicity on TMPRSS2.
J Med Virol. 2021 Jul;93(7):4205-4218. doi: 10.1002/jmv.26911. Epub 2021 Mar 18.
2
The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19.
mBio. 2021 Aug 31;12(4):e0097021. doi: 10.1128/mBio.00970-21. Epub 2021 Aug 3.
3
Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes-prospects and challenges.
Mol Biol Rep. 2021 May;48(5):4667-4675. doi: 10.1007/s11033-021-06390-1. Epub 2021 May 22.
5
Structural Basis of Covalent Inhibitory Mechanism of TMPRSS2-Related Serine Proteases by Camostat.
J Virol. 2021 Sep 9;95(19):e0086121. doi: 10.1128/JVI.00861-21. Epub 2021 Jun 23.
6
Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19.
J Med Virol. 2021 Sep;93(9):5260-5276. doi: 10.1002/jmv.27019. Epub 2021 May 3.
7
Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2.
PLoS Pathog. 2021 Jan 19;17(1):e1009212. doi: 10.1371/journal.ppat.1009212. eCollection 2021 Jan.
8
Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.
J Virol. 2022 Apr 27;96(8):e0012822. doi: 10.1128/jvi.00128-22. Epub 2022 Mar 28.
10
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.

引用本文的文献

2
Insight into Covid Associated Mucormycosis: A Prospective Study.
Iran J Otorhinolaryngol. 2025;37(1):27-32. doi: 10.22038/ijorl.2024.78990.3662.
5
SARS-CoV-2 omicron BA.5 and XBB variants have increased neurotropic potential over BA.1 in K18-hACE2 mice and human brain organoids.
Front Microbiol. 2023 Nov 23;14:1320856. doi: 10.3389/fmicb.2023.1320856. eCollection 2023.
6
7
COVID-19: The Ethno-Geographic Perspective of Differential Immunity.
Vaccines (Basel). 2023 Jan 31;11(2):319. doi: 10.3390/vaccines11020319.
8
Protease-Responsive Potential-Tunable AIEgens for Cell Selective Imaging of TMPRSS2 and Accurate Inhibitor Screening.
Anal Chem. 2023 Feb 21;95(7):3789-3798. doi: 10.1021/acs.analchem.2c04988. Epub 2023 Feb 8.
9
Small molecules in the treatment of COVID-19.
Signal Transduct Target Ther. 2022 Dec 5;7(1):387. doi: 10.1038/s41392-022-01249-8.

本文引用的文献

3
Predicting the animal hosts of coronaviruses from compositional biases of spike protein and whole genome sequences through machine learning.
PLoS Pathog. 2021 Apr 20;17(4):e1009149. doi: 10.1371/journal.ppat.1009149. eCollection 2021 Apr.
4
Chopping the tail: How preventing superspreading can help to maintain COVID-19 control.
Epidemics. 2021 Mar;34:100430. doi: 10.1016/j.epidem.2020.100430. Epub 2020 Dec 21.
5
Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection.
PLoS Comput Biol. 2020 Dec 8;16(12):e1008461. doi: 10.1371/journal.pcbi.1008461. eCollection 2020 Dec.
6
The impact of lockdown strategies targeting age groups on the burden of COVID-19 in France.
Epidemics. 2020 Dec;33:100424. doi: 10.1016/j.epidem.2020.100424. Epub 2020 Nov 24.
7
Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2's main protease.
Virol J. 2020 Nov 26;17(1):190. doi: 10.1186/s12985-020-01457-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验