Suppr超能文献

通过唾液中类固醇激素的测定,建立统计模型以准确预测分娩。

Accurate prediction of birth implementing a statistical model through the determination of steroid hormones in saliva.

机构信息

Department of Physiology, School of Veterinary Medicine, University Complutense of Madrid, 28040, Madrid, Spain.

Department of Statistics and Operational Research, Faculty of Mathematics, University Complutense of Madrid, 28040, Madrid, Spain.

出版信息

Sci Rep. 2021 Mar 10;11(1):5617. doi: 10.1038/s41598-021-84924-0.

Abstract

Steroidal hormone interaction in pregnancy is crucial for adequate fetal evolution and preparation for childbirth and extrauterine life. Estrone sulphate, estriol, progesterone and cortisol play important roles in the initiation of labour mechanism at the start of contractions and cervical effacement. However, their interaction remains uncertain. Although several studies regarding the hormonal mechanism of labour have been reported, the prediction of date of birth remains a challenge. In this study, we present for the first time machine learning algorithms for the prediction of whether spontaneous labour will occur from week 37 onwards. Estrone sulphate, estriol, progesterone and cortisol were analysed in saliva samples collected from 106 pregnant women since week 34 by enzyme-immunoassay (EIA) techniques. We compared a random forest model with a traditional logistic regression over a dataset constructed with the values observed of these measures. We observed that the results, evaluated in terms of accuracy and area under the curve (AUC) metrics, are sensibly better in the random forest model. For this reason, we consider that machine learning methods contribute in an important way to the obstetric practice.

摘要

甾体激素在妊娠中的相互作用对胎儿的充分发育和为分娩及宫外生活做好准备至关重要。雌酮硫酸盐、雌三醇、孕酮和皮质醇在宫缩开始时和宫颈消失时的分娩机制启动中发挥重要作用。然而,它们的相互作用仍然不确定。尽管已经有关于分娩激素机制的多项研究报告,但预测出生日期仍然是一个挑战。在这项研究中,我们首次提出了机器学习算法,用于预测从 37 周开始是否会自然分娩。从第 34 周开始,我们通过酶联免疫吸附测定(EIA)技术分析了 106 名孕妇唾液样本中的雌酮硫酸盐、雌三醇、孕酮和皮质醇。我们将随机森林模型与基于这些测量值构建的数据集上的传统逻辑回归进行了比较。我们观察到,在准确性和曲线下面积(AUC)等指标方面,随机森林模型的结果明显更好。因此,我们认为机器学习方法为产科实践做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b59b/7970941/5a24c357e29a/41598_2021_84924_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验