Department of Anesthesiology, Columbia University, New York, NY, USA.
Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.
J Physiol. 2021 Jun;599(11):2851-2868. doi: 10.1113/JP281037. Epub 2021 Mar 24.
We report a novel method for the transient expression of SARS-CoV-2 envelope (E) protein in intracellular organelles and the plasma membrane of mammalian cells and Xenopus oocytes. Intracellular expression of SARS-CoV-2 E protein increases intra-Golgi pH. By targeting the SARS-CoV-2 E protein to the plasma membrane, we show that it forms a cation channel, viroporin, that is modulated by changes of pH. This method for studying the activity of viroporins may facilitate screening for new antiviral drugs to identify novel treatments for COVID-19.
The envelope (E) protein of coronaviruses such as SARS-CoV-1 is proposed to form an ion channel or viroporin that participates in viral propagation and pathogenesis. Here we developed a technique to study the E protein of SARS-CoV-2 in mammalian cells by directed targeting using a carboxyl-terminal fluorescent protein tag, mKate2. The wild-type SARS-CoV-2 E protein can be trafficked to intracellular organelles, notably the endoplasmic reticulum-Golgi intermediate complex, where its expression increases pH inside the organelle. We also succeeded in targeting SARS-CoV-2 E to the plasma membrane, which enabled biophysical analysis using whole-cell patch clamp recording in a mammalian cell line, HEK 293 cells, and two-electrode voltage clamp electrophysiology in Xenopus oocytes. The results suggest that the E protein forms an ion channel that is permeable to monovalent cations such as Na , Cs and K . The E current is nearly time- and voltage-independent when E protein is expressed in mammalian cells, and is modulated by changes of pH. At pH 6.0 and 7.4, the E protein current is activated, whereas at pH 8.0 and 9.0, the amplitude of E protein current is reduced, and in oocytes the inward E current fades at pH 9 in a time- and voltage-dependent manner. Using this directed targeting method and electrophysiological recordings, potential inhibitors of the E protein can be screened and subsequently investigated for antiviral activity against SARS-CoV-2 in vitro and possible efficacy in treating COVID-19.
我们报告了一种在哺乳动物细胞和非洲爪蟾卵母细胞的细胞内细胞器和质膜中瞬时表达 SARS-CoV-2 包膜(E)蛋白的新方法。SARS-CoV-2 E 蛋白在细胞内的表达增加了高尔基体内的 pH 值。通过将 SARS-CoV-2 E 蛋白靶向质膜,我们表明它形成了一种阳离子通道,即 viroporin,其活性可被 pH 值的变化调节。这种研究 viroporin 活性的方法可能有助于筛选新的抗病毒药物,以确定治疗 COVID-19 的新方法。
冠状病毒(如 SARS-CoV-1)的包膜(E)蛋白被提出形成一种离子通道或 viroporin,参与病毒的繁殖和发病机制。在这里,我们使用羧基末端荧光蛋白标签 mKate2 开发了一种在哺乳动物细胞中定向靶向 SARS-CoV-2 E 蛋白的技术。野生型 SARS-CoV-2 E 蛋白可以被运输到细胞内细胞器,特别是内质网-高尔基体中间复合物,在那里它的表达增加了细胞器内的 pH 值。我们还成功地将 SARS-CoV-2 E 蛋白靶向质膜,这使得我们能够在哺乳动物细胞系 HEK 293 细胞中使用全细胞膜片钳记录以及在非洲爪蟾卵母细胞中使用双电极电压钳电生理学进行生物物理分析。结果表明,E 蛋白形成一种对单价阳离子(如 Na+、Cs+和 K+)具有通透性的离子通道。当 E 蛋白在哺乳动物细胞中表达时,E 电流几乎与时间和电压无关,并受 pH 值的调节。在 pH 值为 6.0 和 7.4 时,E 蛋白电流被激活,而在 pH 值为 8.0 和 9.0 时,E 蛋白电流的幅度减小,并且在卵母细胞中,E 内向电流在 pH 值为 9 时以时间和电压依赖性的方式消失。使用这种定向靶向方法和电生理记录,可以筛选潜在的 E 蛋白抑制剂,并随后在体外研究其对 SARS-CoV-2 的抗病毒活性以及在治疗 COVID-19 方面的可能疗效。