Suppr超能文献

快速的黏弹变化是早期白细胞活化的特征。

Rapid viscoelastic changes are a hallmark of early leukocyte activation.

机构信息

LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France.

B Lymphocyte Dynamics Laboratory, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.

出版信息

Biophys J. 2021 May 4;120(9):1692-1704. doi: 10.1016/j.bpj.2021.02.042. Epub 2021 Mar 17.

Abstract

To accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous. These mechanical changes start within seconds after contact and evolve rapidly over minutes. Remarkably, leukocyte elastic and viscous properties evolve in parallel, preserving a well-defined ratio that constitutes a mechanical signature specific to each cell type. Our results indicate that simultaneously tracking both elastic and viscous properties during an active cell process provides a new, to our knowledge, way to investigate cell mechanical processes. Our findings also suggest that dynamic immunomechanical measurements can help discriminate between leukocyte subtypes during activation.

摘要

为了完成清除感染细胞和对抗病原体的关键任务,白细胞通过与其他细胞形成特殊的界面来激活。这个关键免疫学过程的物理性质还不太清楚,但理解它们很重要,因为已经证明白细胞会对其机械环境做出反应。使用一种创新的微管流变仪,我们在三种不同类型的白细胞中表明,当受到模拟靶细胞的微球刺激时,白细胞的硬度和粘性最高可增加 10 倍。这些机械变化在接触后几秒钟内开始,并在数分钟内迅速演变。值得注意的是,白细胞的弹性和粘性特性呈平行变化,保持着一种定义明确的比例,构成了每种细胞类型特有的机械特征。我们的研究结果表明,在细胞的主动过程中同时跟踪弹性和粘性特性,为我们所知的一种研究细胞力学过程的新方法。我们的发现还表明,动态免疫力学测量可以帮助在激活过程中区分白细胞亚型。

相似文献

1
Rapid viscoelastic changes are a hallmark of early leukocyte activation.
Biophys J. 2021 May 4;120(9):1692-1704. doi: 10.1016/j.bpj.2021.02.042. Epub 2021 Mar 17.
3
Leukocyte relaxation properties.
Biophys J. 1988 Aug;54(2):331-6. doi: 10.1016/S0006-3495(88)82963-1.
4
Viscoelastic properties of leukocytes.
Kroc Found Ser. 1984;16:19-51.
5
Rheology of leukocytes.
Ann N Y Acad Sci. 1987;516:333-47. doi: 10.1111/j.1749-6632.1987.tb33054.x.
6
Viscoelastic shear properties of the fresh porcine lens.
Br J Ophthalmol. 2007 Mar;91(3):366-8. doi: 10.1136/bjo.2006.105965. Epub 2006 Oct 11.
7
Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress.
J Biomech. 1996 Apr;29(4):461-7. doi: 10.1016/0021-9290(95)00069-0.
8
Rheology of blood cells as soft tissues.
Biorheology. 1982;19(3):453-61. doi: 10.3233/bir-1982-19306.
10
Quantifying viscosity and elasticity using holographic imaging by Rayleigh wave dispersion.
Opt Lett. 2022 May 1;47(9):2214-2217. doi: 10.1364/OL.451464.

引用本文的文献

1
Single-cell electro-mechanical shear flow deformability cytometry.
Microsyst Nanoeng. 2024 Nov 22;10(1):173. doi: 10.1038/s41378-024-00810-5.
2
Biomechanics of phagocytosis of red blood cells by macrophages in the human spleen.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2414437121. doi: 10.1073/pnas.2414437121. Epub 2024 Oct 25.
3
Mechanical regulation of lymphocyte activation and function.
J Cell Sci. 2024 Jul 1;137(13). doi: 10.1242/jcs.219030. Epub 2024 Jul 12.
4
Mechanobiology of Dental Pulp Cells.
Cells. 2024 Feb 21;13(5):375. doi: 10.3390/cells13050375.
5
Quantifying both viscoelasticity and surface tension: Why sharp tips overestimate cell stiffness.
Biophys J. 2024 Jan 16;123(2):210-220. doi: 10.1016/j.bpj.2023.12.008. Epub 2023 Dec 12.
7
Activation effects on the physical characteristics of T lymphocytes.
Front Bioeng Biotechnol. 2023 May 15;11:1175570. doi: 10.3389/fbioe.2023.1175570. eCollection 2023.
9
May the force be with your (immune) cells: an introduction to traction force microscopy in Immunology.
Front Immunol. 2022 Jul 28;13:898558. doi: 10.3389/fimmu.2022.898558. eCollection 2022.
10
Mechanosurveillance: Tiptoeing T Cells.
Front Immunol. 2022 May 26;13:886328. doi: 10.3389/fimmu.2022.886328. eCollection 2022.

本文引用的文献

1
Controlling T cells spreading, mechanics and activation by micropatterning.
Sci Rep. 2021 Mar 24;11(1):6783. doi: 10.1038/s41598-021-86133-1.
2
Influence of external forces on actin-dependent T cell protrusions during immune synapse formation.
Biol Cell. 2021 May;113(5):250-263. doi: 10.1111/boc.202000133. Epub 2021 Feb 10.
4
Cytoskeletal tension actively sustains the migratory T-cell synaptic contact.
EMBO J. 2020 Mar 2;39(5):e102783. doi: 10.15252/embj.2019102783. Epub 2020 Jan 2.
5
Actomyosin-driven force patterning controls endocytosis at the immune synapse.
Nat Commun. 2019 Jun 28;10(1):2870. doi: 10.1038/s41467-019-10751-7.
6
Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming.
J Leukoc Biol. 2019 Jun;105(6):1143-1153. doi: 10.1002/JLB.MA0718-295RR. Epub 2019 Mar 5.
7
8
Distinct Roles for Bruton's Tyrosine Kinase in B Cell Immune Synapse Formation.
Front Immunol. 2018 Sep 6;9:2027. doi: 10.3389/fimmu.2018.02027. eCollection 2018.
9
Profiling the origin, dynamics, and function of traction force in B cell activation.
Sci Signal. 2018 Aug 7;11(542):eaai9192. doi: 10.1126/scisignal.aai9192.
10
A map of gene expression in neutrophil-like cell lines.
BMC Genomics. 2018 Aug 1;19(1):573. doi: 10.1186/s12864-018-4957-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验