Suppr超能文献

使用观测数据对基于比率的条件平均治疗效果进行估计与验证

Estimation and Validation of Ratio-based Conditional Average Treatment Effects Using Observational Data.

作者信息

Yadlowsky Steve, Pellegrini Fabio, Lionetto Federica, Braune Stefan, Tian Lu

机构信息

Stanford University, Electrical Engineering, 1265 Welch Rd, Stanford, 94305-6104 United States.

Biogen International GmbH, Baar, Switzerland.

出版信息

J Am Stat Assoc. 2021;116(533):335-352. doi: 10.1080/01621459.2020.1772080. Epub 2020 Jul 7.

Abstract

While sample sizes in randomized clinical trials are large enough to estimate the average treatment effect well, they are often insufficient for estimation of treatment-covariate interactions critical to studying data-driven precision medicine. Observational data from real world practice may play an important role in alleviating this problem. One common approach in trials is to predict the outcome of interest with separate regression models in each treatment arm, and estimate the treatment effect based on the contrast of the predictions. Unfortunately, this simple approach may induce spurious treatment-covariate interaction in observational studies when the regression model is misspecified. Motivated by the need of modeling the number of relapses in multiple sclerosis patients, where the ratio of relapse rates is a natural choice of the treatment effect, we propose to estimate the conditional average treatment effect (CATE) as the ratio of expected potential outcomes, and derive a doubly robust estimator of this CATE in a semiparametric model of treatment-covariate interactions. We also provide a validation procedure to check the quality of the estimator on an independent sample. We conduct simulations to demonstrate the finite sample performance of the proposed methods, and illustrate their advantages on real data by examining the treatment effect of dimethyl fumarate compared to teriflunomide in multiple sclerosis patients.

摘要

虽然随机临床试验中的样本量足够大,可以很好地估计平均治疗效果,但对于估计对研究数据驱动的精准医学至关重要的治疗-协变量相互作用来说,往往还不够。来自实际临床实践的观察性数据可能在缓解这一问题方面发挥重要作用。试验中的一种常见方法是在每个治疗组中使用单独的回归模型预测感兴趣的结果,并根据预测的对比来估计治疗效果。不幸的是,当回归模型设定错误时,这种简单方法可能在观察性研究中导致虚假的治疗-协变量相互作用。受对多发性硬化症患者复发次数进行建模需求的推动,其中复发率之比是治疗效果的自然选择,我们建议将条件平均治疗效果(CATE)估计为预期潜在结果的比值,并在治疗-协变量相互作用的半参数模型中推导该CATE的双重稳健估计量。我们还提供了一个验证程序,以在独立样本上检查估计量的质量。我们进行模拟以证明所提出方法的有限样本性能,并通过研究富马酸二甲酯与特立氟胺在多发性硬化症患者中的治疗效果,在真实数据上说明它们的优势。

相似文献

本文引用的文献

2
Metalearners for estimating heterogeneous treatment effects using machine learning.使用机器学习估计异质处理效应的元学习器。
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165. doi: 10.1073/pnas.1804597116. Epub 2019 Feb 15.
5
A Note on G-Estimation of Causal Risk Ratios.关于因果风险比的 G 估计的注释。
Am J Epidemiol. 2018 May 1;187(5):1079-1084. doi: 10.1093/aje/kwx347.
8
Residual Weighted Learning for Estimating Individualized Treatment Rules.用于估计个体化治疗规则的残差加权学习
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
10
Recursive partitioning for heterogeneous causal effects.异质因果效应的递归划分
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60. doi: 10.1073/pnas.1510489113.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验