Center of Artificial Intelligence in Medicine & Imaging, Stanford University, United States.
Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom; Pacific Parkinson's Research Centre, University of British Columbia, Canada.
Neural Netw. 2021 Jul;139:212-222. doi: 10.1016/j.neunet.2021.03.008. Epub 2021 Mar 17.
Epilepsy is a neurological brain disorder that affects ∼75 million people worldwide. Predicting epileptic seizures holds great potential for improving the quality of life of people with epilepsy, but seizure prediction solely from the Electroencephalogram (EEG) is challenging. Classical machine learning algorithms and a variety of feature engineering methods have become a mainstay in seizure prediction, yet performance has been variable. In this work, we first propose an efficient data pre-processing method that maps the time-series EEG signals into an image-like format (a "scalogram") using continuous wavelet transform. We then develop a novel convolution module named "semi-dilated convolution" that better exploits the geometry of wavelet scalograms and nonsquare-shape images. Finally, we propose a neural network architecture named "semi-dilated convolutional network (SDCN)" that uses semi-dilated convolutions to solely expand the receptive field along the long dimension (image width) while maintaining high resolution along the short dimension (image height). Results demonstrate that the proposed SDCN architecture outperforms previous seizure prediction methods, achieving an average seizure prediction sensitivity of 98.90% for scalp EEG and 88.45-89.52% for invasive EEG.
癫痫是一种影响全球约 7500 万人的神经脑紊乱。预测癫痫发作对于提高癫痫患者的生活质量具有巨大潜力,但仅从脑电图(EEG)预测癫痫发作具有挑战性。经典的机器学习算法和各种特征工程方法已成为癫痫预测的主要方法,但性能各不相同。在这项工作中,我们首先提出了一种有效的数据预处理方法,该方法使用连续小波变换将时间序列 EEG 信号映射到类似图像的格式(“标度图”)。然后,我们开发了一种名为“半扩张卷积”的新型卷积模块,该模块更好地利用了小波标度图和非正方形图像的几何形状。最后,我们提出了一种名为“半扩张卷积网络(SDCN)”的神经网络架构,该架构使用半扩张卷积仅沿长维度(图像宽度)扩展感受野,同时沿短维度(图像高度)保持高分辨率。结果表明,所提出的 SDCN 架构优于以前的癫痫发作预测方法,头皮 EEG 的平均癫痫发作预测灵敏度为 98.90%,而侵入性 EEG 的平均癫痫发作预测灵敏度为 88.45%-89.52%。