Suppr超能文献

使用情感分析预测政治传播推文的观点反转。

Using sentiment analysis to predict opinion inversion in Tweets of political communication.

机构信息

Industrial Engineering Department, Tel Aviv University, 69978, Tel Aviv, Israel.

出版信息

Sci Rep. 2021 Mar 31;11(1):7250. doi: 10.1038/s41598-021-86510-w.

Abstract

Social media networks have become an essential tool for sharing information in political discourse. Recent studies examining opinion diffusion have highlighted that some users may invert a message's content before disseminating it, propagating a contrasting view relative to that of the original author. Using politically-oriented discourse related to Israel with focus on the Israeli-Palestinian conflict, we explored this Opinion Inversion (O.I.) phenomenon. From a corpus of approximately 716,000 relevant Tweets, we identified 7147 Source-Quote pairs. These Source-Quote pairs accounted for 69% of the total volume of the corpus. Using a Random Forest model based on the Natural Language Processing features of the Source text and user attributes, we could predict whether a Source will undergo O.I. upon retweet with an ROC-AUC of 0.83. We found that roughly 80% of the factors that explain O.I. are associated with the original message's sentiment towards the conflict. In addition, we identified pairs comprised of Quotes related to the domain while their Sources were unrelated to the domain. These Quotes, which accounted for 14% of the Source-Quote pairs, maintained similar sentiment levels as the Source. Our case study underscores that O.I. plays an important role in political communication on social media. Nevertheless, O.I. can be predicted in advance using simple artificial intelligence tools and that prediction might be used to optimize content propagation.

摘要

社交媒体网络已成为政治话语中分享信息的重要工具。最近研究意见传播的研究强调,一些用户在传播信息之前可能会颠倒信息的内容,传播与原始作者相对立的观点。我们使用与以色列有关的政治话语,重点关注以巴冲突,探讨了这种观点反转(O.I.)现象。从大约 716,000 条相关推文中,我们确定了 7147 对源引对。这些源引对占语料库总量的 69%。我们使用基于源文本和用户属性的自然语言处理特征的随机森林模型,可以预测源在转发时是否会发生 O.I.,ROC-AUC 为 0.83。我们发现,大约 80%解释 O.I.的因素与原始信息对冲突的情绪有关。此外,我们还确定了由与该领域相关的引语组成的对,而它们的源与该领域无关。这些引语占源引对的 14%,其情绪水平与源相同。我们的案例研究强调,O.I.在社交媒体上的政治传播中起着重要作用。然而,使用简单的人工智能工具可以提前预测 O.I.,并且可以使用该预测来优化内容传播。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验