Suppr超能文献

基于卷积神经网络的口腔发育异常临床预测指标:深度学习结果的类激活映射分析

Convolutional Neural Network-Based Clinical Predictors of Oral Dysplasia: Class Activation Map Analysis of Deep Learning Results.

作者信息

Camalan Seda, Mahmood Hanya, Binol Hamidullah, Araújo Anna Luiza Damaceno, Santos-Silva Alan Roger, Vargas Pablo Agustin, Lopes Marcio Ajudarte, Khurram Syed Ali, Gurcan Metin N

机构信息

Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.

School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK.

出版信息

Cancers (Basel). 2021 Mar 14;13(6):1291. doi: 10.3390/cancers13061291.

Abstract

Oral cancer/oral squamous cell carcinoma is among the top ten most common cancers globally, with over 500,000 new cases and 350,000 associated deaths every year worldwide. There is a critical need for objective, novel technologies that facilitate early, accurate diagnosis. For this purpose, we have developed a method to classify images as "suspicious" and "normal" by performing transfer learning on Inception-ResNet-V2 and generated automated heat maps to highlight the region of the images most likely to be involved in decision making. We have tested the developed method's feasibility on two independent datasets of clinical photographic images of 30 and 24 patients from the UK and Brazil, respectively. Both 10-fold cross-validation and leave-one-patient-out validation methods were performed to test the system, achieving accuracies of 73.6% (±19%) and 90.9% (±12%), F1-scores of 97.9% and 87.2%, and precision values of 95.4% and 99.3% at recall values of 100.0% and 81.1% on these two respective cohorts. This study presents several novel findings and approaches, namely the development and validation of our methods on two datasets collected in different countries showing that using patches instead of the whole lesion image leads to better performance and analyzing which regions of the images are predictive of the classes using class activation map analysis.

摘要

口腔癌/口腔鳞状细胞癌是全球十大最常见癌症之一,全球每年有超过50万新发病例和35万相关死亡病例。迫切需要客观、新颖的技术来促进早期、准确的诊断。为此,我们开发了一种方法,通过对Inception-ResNet-V2进行迁移学习,将图像分类为“可疑”和“正常”,并生成自动热图以突出显示图像中最有可能参与决策的区域。我们分别在来自英国和巴西的30名和24名患者的临床摄影图像的两个独立数据集上测试了所开发方法的可行性。采用10折交叉验证和留一患者验证方法对系统进行测试,在这两个相应队列中,召回率分别为100.0%和81.1%时,准确率分别达到73.6%(±19%)和90.9%(±12%),F1分数分别为97.9%和87.2%,精确率分别为95.4%和99.3%。本研究提出了几个新颖的发现和方法,即在两个不同国家收集的数据集上开发和验证我们的方法,表明使用图像块而不是整个病变图像可带来更好的性能,并使用类激活映射分析来分析图像的哪些区域可预测类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3678/8001078/d415eadac0ce/cancers-13-01291-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验