Suppr超能文献

因果推断工具变量法中的缺失数据处理

Handling Missing Data in Instrumental Variable Methods for Causal Inference.

作者信息

Kennedy Edward H, Mauro Jacqueline A, Daniels Michael J, Burns Natalie, Small Dylan S

机构信息

Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, USA, 15213.

Department of Statistics, University of Florida, Gainesville, USA 32611.

出版信息

Annu Rev Stat Appl. 2019 Mar;6(1):125-148. doi: 10.1146/annurev-statistics-031017-100353. Epub 2018 Nov 28.

Abstract

It is very common in instrumental variable studies for there to be missing instrument data. For example, in the Wisconsin Longitudinal Study one can use genotype data as a Mendelian randomization-style instrument, but this information is often missing when subjects do not contribute saliva samples, or when the genotyping platform output is ambiguous. Here we review missing-at-random assumptions one can use to identify instrumental variable causal effects, and discuss various approaches for estimation and inference. We consider likelihood-based methods, regression and weighting estimators, and doubly robust estimators. The likelihood-based methods yield the most precise inference, and are optimal under the model assumptions, while the doubly robust estimators can attain the nonparametric efficiency bound while allowing flexible nonparametric estimation of nuisance functions (e.g., instrument propensity scores). The regression and weighting estimators can sometimes be easiest to describe and implement. Our main contribution is an extensive review of this wide array of estimators under varied missing-at-random assumptions, along with discussion of asymptotic properties and inferential tools. We also implement many of the estimators in an analysis of the Wisconsin Longitudinal Study, to study effects of impaired cognitive functioning on depression.

摘要

在工具变量研究中,工具数据缺失的情况非常普遍。例如,在威斯康星纵向研究中,可以将基因型数据用作孟德尔随机化式的工具变量,但当受试者未提供唾液样本,或者基因分型平台输出结果不明确时,这些信息往往会缺失。在此,我们回顾了可用于识别工具变量因果效应的随机缺失假设,并讨论了估计和推断的各种方法。我们考虑了基于似然的方法、回归和加权估计器以及双重稳健估计器。基于似然的方法能得出最精确的推断,并且在模型假设下是最优的,而双重稳健估计器可以达到非参数效率界,同时允许对干扰函数进行灵活的非参数估计(例如,工具倾向得分)。回归和加权估计器有时描述和实施起来最为容易。我们的主要贡献是在各种随机缺失假设下,对这一系列广泛的估计器进行了全面回顾,并讨论了渐近性质和推断工具。我们还在对威斯康星纵向研究的分析中实施了许多估计器,以研究认知功能受损对抑郁症的影响。

相似文献

1
Handling Missing Data in Instrumental Variable Methods for Causal Inference.因果推断工具变量法中的缺失数据处理
Annu Rev Stat Appl. 2019 Mar;6(1):125-148. doi: 10.1146/annurev-statistics-031017-100353. Epub 2018 Nov 28.
4
Data-Adaptive Bias-Reduced Doubly Robust Estimation.数据自适应偏差减少的双重稳健估计
Int J Biostat. 2016 May 1;12(1):253-82. doi: 10.1515/ijb-2015-0029.
7
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.

引用本文的文献

本文引用的文献

2
HIGHER ORDER ESTIMATING EQUATIONS FOR HIGH-DIMENSIONAL MODELS.高维模型的高阶估计方程
Ann Stat. 2017 Oct;45(5):1951-1987. doi: 10.1214/16-AOS1515. Epub 2017 Oct 31.
3
Nonparametric methods for doubly robust estimation of continuous treatment effects.连续治疗效应双重稳健估计的非参数方法。
J R Stat Soc Series B Stat Methodol. 2017 Sep;79(4):1229-1245. doi: 10.1111/rssb.12212. Epub 2016 Sep 30.
4
Doubly robust estimation of the local average treatment effect curve.局部平均治疗效果曲线的双重稳健估计。
J R Stat Soc Series B Stat Methodol. 2015 Mar;77(2):373-396. doi: 10.1111/rssb.12078.
5
Instrumental variable methods for causal inference.工具变量法在因果推断中的应用。
Stat Med. 2014 Jun 15;33(13):2297-340. doi: 10.1002/sim.6128. Epub 2014 Mar 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验