Suppr超能文献

利用年龄分层的住院和血清学数据监测 SARS-CoV-2 感染人群的比例:一项建模研究。

Monitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serological data: a modelling study.

机构信息

Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.

Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France; Santé Publique France, French National Public Health Agency, Saint-Maurice, France.

出版信息

Lancet Public Health. 2021 Jun;6(6):e408-e415. doi: 10.1016/S2468-2667(21)00064-5. Epub 2021 Apr 8.

Abstract

BACKGROUND

Regional monitoring of the proportion of the population who have been infected by SARS-CoV-2 is important to guide local management of the epidemic, but is difficult in the absence of regular nationwide serosurveys. We aimed to estimate in near real time the proportion of adults who have been infected by SARS-CoV-2.

METHODS

In this modelling study, we developed a method to reconstruct the proportion of adults who have been infected by SARS-CoV-2 and the proportion of infections being detected, using the joint analysis of age-stratified seroprevalence, hospitalisation, and case data, with deconvolution methods. We developed our method on a dataset consisting of seroprevalence estimates from 9782 participants (aged ≥20 years) in the two worst affected regions of France in May, 2020, and applied our approach to the 13 French metropolitan regions over the period March, 2020, to January, 2021. We validated our method externally using data from a national seroprevalence study done between May and June, 2020.

FINDINGS

We estimate that 5·7% (95% CI 5·1-6·4) of adults in metropolitan France had been infected with SARS-CoV-2 by May 11, 2020. This proportion remained stable until August, 2020, and increased to 14·9% (13·2-16·9) by Jan 15, 2021. With 26·5% (23·4-29·8) of adult residents having been infected in Île-de-France (Paris region) compared with 5·1% (4·5-5·8) in Brittany by January, 2021, regional variations remained large (coefficient of variation [CV] 0·50) although less so than in May, 2020 (CV 0·74). The proportion infected was twice as high (20·4%, 15·6-26·3) in 20-49-year-olds than in individuals aged 50 years or older (9·7%, 6·9-14·1). 40·2% (34·3-46·3) of infections in adults were detected in June to August, 2020, compared with 49·3% (42·9-55·9) in November, 2020, to January, 2021. Our regional estimates of seroprevalence were strongly correlated with the external validation dataset (coefficient of correlation 0·89).

INTERPRETATION

Our simple approach to estimate the proportion of adults that have been infected with SARS-CoV-2 can help to characterise the burden of SARS-CoV-2 infection, epidemic dynamics, and the performance of surveillance in different regions.

FUNDING

EU RECOVER, Agence Nationale de la Recherche, Fondation pour la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale (Inserm).

摘要

背景

区域监测 SARS-CoV-2 感染人群的比例对于指导当地疫情管理非常重要,但在没有定期全国血清学调查的情况下,这很难实现。我们旨在实时估计成年人的 SARS-CoV-2 感染比例。

方法

在这项建模研究中,我们使用年龄分层血清流行率、住院和病例数据的联合分析以及去卷积方法,开发了一种方法来重建成年人 SARS-CoV-2 感染比例和感染检测比例。我们在一个由 9782 名(年龄≥20 岁)参与者的血清流行率估计数据组成的数据集上开发了我们的方法,该数据集来自 2020 年 5 月法国受影响最严重的两个地区,并在 2020 年 3 月至 2021 年 1 月期间将我们的方法应用于法国 13 个大都市地区。我们使用 2020 年 5 月至 6 月进行的全国血清流行率研究的数据进行外部验证。

结果

我们估计,2020 年 5 月 11 日,法国大都市地区有 5.7%(95%CI 5.1-6.4)的成年人感染了 SARS-CoV-2。这一比例在 2020 年 8 月之前保持稳定,到 2021 年 1 月 15 日增加到 14.9%(13.2-16.9)。到 2021 年 1 月,大巴黎地区(Île-de-France)的成年居民中有 26.5%(23.4-29.8)感染,而布列塔尼地区只有 5.1%(4.5-5.8),区域差异仍然很大(变异系数[CV]0.50),尽管比 2020 年 5 月(CV 0.74)要小。20-49 岁人群的感染比例是 50 岁及以上人群的两倍(20.4%,15.6-26.3)。2020 年 6 月至 8 月期间检测到成年人感染的比例为 40.2%(34.3-46.3),而 2020 年 11 月至 2021 年 1 月期间检测到 49.3%(42.9-55.9)。我们对血清流行率的区域估计与外部验证数据集密切相关(相关系数 0.89)。

解释

我们简单的方法来估计成年人 SARS-CoV-2 感染比例可以帮助描述 SARS-CoV-2 感染的负担、疫情动态以及不同地区监测的性能。

资金

欧盟复苏计划、法国国家研究署、法国国家卫生与医学研究所(Inserm)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd1a/8032222/de1bdae1b583/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验