Suppr超能文献

剂量组学:从剂量分布中提取三维空间特征以预测放射性肺炎的发生率。

Dosiomics: Extracting 3D Spatial Features From Dose Distribution to Predict Incidence of Radiation Pneumonitis.

作者信息

Liang Bin, Yan Hui, Tian Yuan, Chen Xinyuan, Yan Lingling, Zhang Tao, Zhou Zongmei, Wang Lvhua, Dai Jianrong

机构信息

Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Oncol. 2019 Apr 12;9:269. doi: 10.3389/fonc.2019.00269. eCollection 2019.

Abstract

Radiation pneumonitis (RP) is one of the major toxicities of thoracic radiation therapy. RP incidence has been proven to be closely associated with the dosimetric factors and normal tissue control possibility (NTCP) factors. However, because these factors only utilize limited information of the dose distribution, the prediction abilities of these factors are modest. We adopted the dosiomics method for RP prediction. The dosiomics method first extracts spatial features of the dose distribution within ipsilateral, contralateral, and total lungs, and then uses these extracted features to construct prediction model via univariate and multivariate logistic regression (LR). The dosiomics method is validated using 70 non-small cell lung cancer (NSCLC) patients treated with volumetric modulated arc therapy (VMAT) radiotherapy. Dosimetric and NTCP factors based prediction models are also constructed to compare with the dosiomics features based prediction model. For the dosimetric, NTCP and dosiomics factors/features, the most significant single factors/features are the mean dose, parallel/serial (PS) NTCP and gray level co-occurrence matrix (GLCM) contrast of ipsilateral lung, respectively. And the area under curve (AUC) of univariate LR is 0.665, 0.710 and 0.709, respectively. The second significant factors are V of contralateral lung, equivalent uniform dose (EUD) derived from PS NTCP of contralateral lung and the low gray level run emphasis of gray level run length matrix (GLRLM) of total lungs. The AUC of multivariate LR is improved to 0.676, 0.744, and 0.782, respectively. The results demonstrate that the univariate LR of dosiomics features has approximate predictive ability with NTCP factors, and the multivariate LR outperforms both the dosimetric and NTCP factors. In conclusion, the spatial features of dose distribution extracted by the dosiomics method effectively improves the prediction ability.

摘要

放射性肺炎(RP)是胸部放射治疗的主要毒性反应之一。已证实RP的发生率与剂量学因素和正常组织控制概率(NTCP)因素密切相关。然而,由于这些因素仅利用了剂量分布的有限信息,其预测能力有限。我们采用剂量组学方法进行RP预测。剂量组学方法首先提取同侧肺、对侧肺和全肺内剂量分布的空间特征,然后通过单变量和多变量逻辑回归(LR)利用这些提取的特征构建预测模型。使用70例接受容积调强弧形放疗(VMAT)的非小细胞肺癌(NSCLC)患者对剂量组学方法进行验证。还构建了基于剂量学和NTCP因素的预测模型,以与基于剂量组学特征的预测模型进行比较。对于剂量学、NTCP和剂量组学因素/特征,最显著的单一因素/特征分别是平均剂量、同侧肺的平行/串行(PS)NTCP和灰度共生矩阵(GLCM)对比度。单变量LR的曲线下面积(AUC)分别为0.665、0.710和0.709。第二个显著因素是对侧肺的V、对侧肺PS NTCP衍生的等效均匀剂量(EUD)以及全肺灰度游程长度矩阵(GLRLM)的低灰度游程强调。多变量LR的AUC分别提高到0.676、0.744和0.782。结果表明,剂量组学特征的单变量LR具有与NTCP因素近似的预测能力,多变量LR优于剂量学和NTCP因素。总之,剂量组学方法提取的剂量分布空间特征有效提高了预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42d9/6473398/d604470adcbb/fonc-09-00269-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验