Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
Cambridge Hearing Group, Cambridge, UK.
J Assoc Res Otolaryngol. 2021 Oct;22(5):567-589. doi: 10.1007/s10162-021-00795-2. Epub 2021 Apr 23.
The knowledge of patient-specific neural excitation patterns from cochlear implants (CIs) can provide important information for optimizing efficacy and improving speech perception outcomes. The Panoramic ECAP ('PECAP') method (Cosentino et al. 2015) uses forward-masked electrically evoked compound action-potentials (ECAPs) to estimate neural activation patterns of CI stimulation. The algorithm requires ECAPs be measured for all combinations of probe and masker electrodes, exploiting the fact that ECAP amplitudes reflect the overlapping excitatory areas of both probes and maskers. Here we present an improved version of the PECAP algorithm that imposes biologically realistic constraints on the solution, that, unlike the previous version, produces detailed estimates of neural activation patterns by modelling current spread and neural health along the intracochlear electrode array and is capable of identifying multiple regions of poor neural health. The algorithm was evaluated for reliability and accuracy in three ways: (1) computer-simulated current-spread and neural-health scenarios, (2) comparisons to psychophysical correlates of neural health and electrode-modiolus distances in human CI users, and (3) detection of simulated neural 'dead' regions (using forward masking) in human CI users. The PECAP algorithm reliably estimated the computer-simulated scenarios. A moderate but significant negative correlation between focused thresholds and the algorithm's neural-health estimates was found, consistent with previous literature. It also correctly identified simulated 'dead' regions in all seven CI users evaluated. The revised PECAP algorithm provides an estimate of neural excitation patterns in CIs that could be used to inform and optimize CI stimulation strategies for individual patients in clinical settings.
从人工耳蜗(CI)中获取特定于患者的神经兴奋模式的知识可以提供重要信息,有助于优化疗效和改善言语感知效果。全景 ECAP('PECAP')方法(Cosentino 等人,2015 年)使用正向掩蔽电诱发复合动作电位(ECAP)来估计 CI 刺激的神经激活模式。该算法要求为所有探针和掩蔽电极组合测量 ECAP,利用 ECAP 幅度反映探针和掩蔽器重叠的兴奋区域这一事实。在这里,我们提出了 PECAP 算法的改进版本,该版本对解决方案施加了生物学上合理的约束,与之前的版本不同,该版本通过对电流扩散和沿耳蜗内电极阵列的神经健康进行建模,生成神经激活模式的详细估计,并能够识别多个神经健康不良区域。该算法通过三种方式评估其可靠性和准确性:(1)计算机模拟的电流扩散和神经健康情况,(2)与人类 CI 用户的神经健康和电极-调制器距离的心理物理相关性进行比较,以及(3)在人类 CI 用户中检测模拟的神经“死亡”区域(使用正向掩蔽)。PECAP 算法可靠地估计了计算机模拟的场景。在聚焦阈值和算法的神经健康估计之间发现了中等但显著的负相关,与之前的文献一致。它还正确地识别了所有七名接受评估的 CI 用户中的模拟“死亡”区域。经过修订的 PECAP 算法提供了一种人工耳蜗神经兴奋模式的估计方法,可用于为临床环境中的个体患者提供信息并优化人工耳蜗刺激策略。