Suppr超能文献

利用机器学习方法研究 COVID-19 严重程度中的细胞轨迹及其转录程序。

Investigating Cellular Trajectories in the Severity of COVID-19 and Their Transcriptional Programs Using Machine Learning Approaches.

机构信息

Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.

出版信息

Genes (Basel). 2021 Apr 24;12(5):635. doi: 10.3390/genes12050635.

Abstract

Single-cell RNA sequencing of the bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients has enabled us to examine gene expression changes of human tissue in response to the SARS-CoV-2 virus infection. However, the underlying mechanisms of COVID-19 pathogenesis at single-cell resolution, its transcriptional drivers, and dynamics require further investigation. In this study, we applied machine learning algorithms to infer the trajectories of cellular changes and identify their transcriptional programs. Our study generated cellular trajectories that show the COVID-19 pathogenesis of healthy-to-moderate and healthy-to-severe on macrophages and T cells, and we observed more diverse trajectories in macrophages compared to T cells. Furthermore, our deep-learning algorithm DrivAER identified several pathways (e.g., xenobiotic pathway and complement pathway) and transcription factors (e.g., MITF and GATA3) that could be potential drivers of the transcriptomic changes for COVID-19 pathogenesis and the markers of the COVID-19 severity. Moreover, macrophages-related functions corresponded more to the disease severity compared to T cells-related functions. Our findings more proficiently dissected the transcriptomic changes leading to the severity of a COVID-19 infection.

摘要

对 COVID-19 患者的支气管肺泡灌洗液 (BALF) 样本进行单细胞 RNA 测序,使我们能够研究人类组织对 SARS-CoV-2 病毒感染的基因表达变化。然而,在单细胞分辨率下,COVID-19 发病机制的潜在机制、其转录驱动因素和动态仍需要进一步研究。在这项研究中,我们应用机器学习算法来推断细胞变化的轨迹并识别其转录程序。我们的研究生成了细胞轨迹,显示了健康到中度和健康到重度 COVID-19 在巨噬细胞和 T 细胞上的发病机制,并且我们观察到巨噬细胞中的轨迹比 T 细胞中的更具多样性。此外,我们的深度学习算法 DrivAER 鉴定了几个可能是 COVID-19 发病机制和 COVID-19 严重程度标志物的转录组变化的潜在驱动因素的途径(例如,外源物途径和补体途径)和转录因子(例如,MITF 和 GATA3)。此外,与 T 细胞相关的功能相比,巨噬细胞相关的功能与疾病的严重程度更相关。我们的研究结果更有效地剖析了导致 COVID-19 感染严重程度的转录组变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/8145325/571dbe76aaaa/genes-12-00635-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验