Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, 01307, Germany.
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, 01328, Germany.
Adv Healthc Mater. 2021 Jun;10(11):e2100012. doi: 10.1002/adhm.202100012. Epub 2021 Apr 30.
Conductive hydrogels (CHs) are emerging as a promising and well-utilized platform for 3D cell culture and tissue engineering to incorporate electron signals as biorelevant physical cues. In conventional covalently crosslinked conductive hydrogels, the network dynamics (e.g., stress relaxation, shear shining, and self-healing) required for complex cellular functions and many biomedical utilities (e.g., injection) cannot be easily realized. In contrast, dynamic conductive hydrogels (DCHs) are fabricated by dynamic and reversible crosslinks. By allowing for the breaking and reforming of the reversible linkages, DCHs can provide dynamic environments for cellular functions while maintaining matrix integrity. These dynamic materials can mimic some properties of native tissues, making them well-suited for several biotechnological and medical applications. An overview of the design, synthesis, and engineering of DCHs is presented in this review, focusing on the different dynamic crosslinking mechanisms of DCHs and their biomedical applications.
导电水凝胶(CHs)作为一种有前途且应用广泛的 3D 细胞培养和组织工程平台,可将电子信号作为生物相关的物理线索纳入其中。在传统的共价交联导电水凝胶中,复杂细胞功能和许多生物医学用途(如注射)所需的网络动力学(例如,应力松弛、剪切发光和自修复)不容易实现。相比之下,动态导电水凝胶(DCHs)是通过动态和可逆交联制备的。通过允许可逆键的断裂和形成,DCHs 可以为细胞功能提供动态环境,同时保持基质的完整性。这些动态材料可以模拟天然组织的一些特性,非常适合多种生物技术和医疗应用。本文综述了 DCHs 的设计、合成和工程,重点介绍了 DCHs 的不同动态交联机制及其在生物医学中的应用。