Suppr超能文献

基于机器学习的与热相关疾病相关的死亡率预测模型。

Machine learning-based mortality prediction model for heat-related illness.

机构信息

Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Tomioka, 2-1-1, Urayasu, Chiba, 279-0021, Japan.

Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan.

出版信息

Sci Rep. 2021 May 4;11(1):9501. doi: 10.1038/s41598-021-88581-1.

Abstract

In this study, we aimed to develop and validate a machine learning-based mortality prediction model for hospitalized heat-related illness patients. After 2393 hospitalized patients were extracted from a multicentered heat-related illness registry in Japan, subjects were divided into the training set for development (n = 1516, data from 2014, 2017-2019) and the test set (n = 877, data from 2020) for validation. Twenty-four variables including characteristics of patients, vital signs, and laboratory test data at hospital arrival were trained as predictor features for machine learning. The outcome was death during hospital stay. In validation, the developed machine learning models (logistic regression, support vector machine, random forest, XGBoost) demonstrated favorable performance for outcome prediction with significantly increased values of the area under the precision-recall curve (AUPR) of 0.415 [95% confidence interval (CI) 0.336-0.494], 0.395 [CI 0.318-0.472], 0.426 [CI 0.346-0.506], and 0.528 [CI 0.442-0.614], respectively, compared to that of the conventional acute physiology and chronic health evaluation (APACHE)-II score of 0.287 [CI 0.222-0.351] as a reference standard. The area under the receiver operating characteristic curve (AUROC) values were also high over 0.92 in all models, although there were no statistical differences compared to APACHE-II. This is the first demonstration of the potential of machine learning-based mortality prediction models for heat-related illnesses.

摘要

在这项研究中,我们旨在开发和验证一种基于机器学习的住院热病患者死亡率预测模型。从日本多中心热病登记处提取了 2393 名住院患者后,将受试者分为训练集(n=1516,数据来自 2014 年、2017-2019 年)和测试集(n=877,数据来自 2020 年)进行验证。24 个变量,包括患者特征、生命体征和入院时的实验室检查数据,被训练为机器学习的预测特征。结果是住院期间死亡。在验证中,开发的机器学习模型(逻辑回归、支持向量机、随机森林、XGBoost)在预测结果方面表现出良好的性能,精度-召回曲线下面积(AUPR)的显著增加,分别为 0.415[95%置信区间(CI)0.336-0.494]、0.395[CI 0.318-0.472]、0.426[CI 0.346-0.506]和 0.528[CI 0.442-0.614],而传统的急性生理学和慢性健康评估(APACHE)-II 评分的参考标准为 0.287[CI 0.222-0.351]。所有模型的接收者操作特征曲线(AUROC)值也很高,均超过 0.92,尽管与 APACHE-II 相比没有统计学差异。这是首次证明基于机器学习的热病死亡率预测模型的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/8096946/a45788f7de54/41598_2021_88581_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验