Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
Eur Radiol. 2021 Dec;31(12):9012-9021. doi: 10.1007/s00330-021-08036-z. Epub 2021 May 19.
To develop a deep learning-based pulmonary vessel segmentation algorithm (DLVS) from noncontrast chest CT and to investigate its clinical implications in assessing vascular remodeling of chronic obstructive lung disease (COPD) patients.
For development, 104 pulmonary CT angiography scans (49,054 slices) using a dual-source CT were collected, and spatiotemporally matched virtual noncontrast and 50-keV images were generated. Vessel maps were extracted from the 50-keV images. The 3-dimensional U-Net-based DLVS was trained to segment pulmonary vessels (with a vessel map as the output) from virtual noncontrast images (as the input). For external validation, vendor-independent noncontrast CT images (n = 14) and the VESSEL 12 challenge open dataset (n = 3) were used. For each case, 200 points were selected including 20 intra-lesional points, and the probability value for each point was extracted. For clinical validation, we included 281 COPD patients with low-dose noncontrast CTs. The DLVS-calculated volume of vessels with a cross-sectional area < 5 mm (PVV5) and the PVV5 divided by total vessel volume (%PVV5) were measured.
DLVS correctly segmented 99.1% of the intravascular points (1,387/1,400) and 93.1% of the extravascular points (1,309/1,400). The areas-under-the receiver-operating characteristic curve (AUROCs) were 0.977 and 0.969 for the two external validation datasets. For the COPD patients, both PPV5 and %PPV5 successfully differentiated severe patients whose FEV1 < 50 (AUROCs; 0.715 and 0.804) and were significantly correlated with the emphysema index (Ps < .05).
DLVS successfully segmented pulmonary vessels on noncontrast chest CT by utilizing spatiotemporally matched 50-keV images from a dual-source CT scanner and showed promising clinical applicability in COPD.
• We developed a deep learning pulmonary vessel segmentation algorithm using virtual noncontrast images and 50-keV enhanced images produced by a dual-source CT scanner. • Our algorithm successfully segmented vessels on diseased lungs. • Our algorithm showed promising results in assessing the loss of small vessel density in COPD patients.
开发一种基于深度学习的肺部血管分割算法(DLVS),从非对比胸部 CT 中提取信息,并研究其在评估慢性阻塞性肺疾病(COPD)患者血管重构方面的临床意义。
为了开发,我们收集了 104 例使用双源 CT 进行的肺动脉 CT 血管造影(CTA)扫描(共 49054 个层面),并生成了时空匹配的虚拟非对比和 50keV 图像。从 50keV 图像中提取血管图。基于三维 U-Net 的 DLVS 被训练用于从虚拟非对比图像(作为输入)中分割肺部血管(以血管图作为输出)。为了外部验证,我们使用了独立于供应商的非对比 CT 图像(n=14)和 VESSEL 12 挑战赛的开放数据集(n=3)。对于每个病例,选择了 200 个点,包括 20 个病变内点,并提取了每个点的概率值。为了临床验证,我们纳入了 281 例 COPD 患者的低剂量非对比 CT。测量了截面积<5mm 的血管容积(PVV5)和 PVV5 占总血管容积的百分比(%PVV5)。
DLVS 正确分割了 99.1%的血管内点(1387/1400)和 93.1%的血管外点(1309/1400)。对于两个外部验证数据集,接收者操作特征曲线下的面积(AUROCs)分别为 0.977 和 0.969。对于 COPD 患者,PPV5 和 %PPV5 均成功区分了 FEV1<50%的严重患者(AUROCs 分别为 0.715 和 0.804),与肺气肿指数显著相关(P<0.05)。
DLVS 成功地在非对比胸部 CT 上分割了肺部血管,该算法利用了双源 CT 扫描仪生成的时空匹配的 50keV 增强图像,在 COPD 中具有良好的临床应用前景。
我们使用虚拟非对比图像和双源 CT 扫描仪生成的 50keV 增强图像开发了一种深度学习肺部血管分割算法。
我们的算法成功分割了病变肺部的血管。
我们的算法在评估 COPD 患者小血管密度损失方面显示出良好的效果。