Suppr超能文献

从实验室到临床:单细胞分析在癌症免疫治疗中的应用。

From bench to bedside: Single-cell analysis for cancer immunotherapy.

机构信息

McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, 550 N Broadway, Suite 1101E, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Cancer Cell. 2021 Aug 9;39(8):1062-1080. doi: 10.1016/j.ccell.2021.07.004. Epub 2021 Jul 29.

Abstract

Single-cell technologies are emerging as powerful tools for cancer research. These technologies characterize the molecular state of each cell within a tumor, enabling new exploration of tumor heterogeneity, microenvironment cell-type composition, and cell state transitions that affect therapeutic response, particularly in the context of immunotherapy. Analyzing clinical samples has great promise for precision medicine but is technically challenging. Successfully identifying predictors of response requires well-coordinated, multi-disciplinary teams to ensure adequate sample processing for high-quality data generation and computational analysis for data interpretation. Here, we review current approaches to sample processing and computational analysis regarding their application to translational cancer immunotherapy research.

摘要

单细胞技术正在成为癌症研究的有力工具。这些技术可以描述肿瘤中每个细胞的分子状态,从而可以更深入地研究肿瘤异质性、微环境细胞类型组成以及影响治疗反应的细胞状态转变,尤其是在免疫治疗的背景下。分析临床样本在精准医疗方面具有很大的潜力,但在技术上具有挑战性。成功确定治疗反应的预测因子需要协调良好的多学科团队,以确保对高质量数据生成和数据解释的计算分析进行充分的样本处理。在这里,我们回顾了目前在转化癌症免疫治疗研究中应用的样本处理和计算分析方法。

相似文献

2
Applications of Single-Cell Omics in Tumor Immunology.单细胞组学在肿瘤免疫学中的应用。
Front Immunol. 2021 Jun 9;12:697412. doi: 10.3389/fimmu.2021.697412. eCollection 2021.
5
Single-Cell Proteomics for Cancer Immunotherapy.单细胞蛋白质组学在癌症免疫治疗中的应用
Adv Cancer Res. 2018;139:185-207. doi: 10.1016/bs.acr.2018.04.006. Epub 2018 May 23.
7
Data enhancement in the age of spatial biology.空间生物学时代的数据增强。
Adv Cancer Res. 2024;163:39-70. doi: 10.1016/bs.acr.2024.06.008. Epub 2024 Jul 9.
8
Advances in spatial multi-omics in tumors.肿瘤空间多组学研究进展。
Tumori. 2024 Oct;110(5):327-339. doi: 10.1177/03008916241271458. Epub 2024 Aug 26.
9
Single-Cell Transcriptomic Analysis of Tumor Heterogeneity.肿瘤异质性的单细胞转录组分析
Trends Cancer. 2018 Apr;4(4):264-268. doi: 10.1016/j.trecan.2018.02.003. Epub 2018 Mar 9.

引用本文的文献

4
Virtual cells for predictive immunotherapy.用于预测性免疫治疗的虚拟细胞。
Nat Biotechnol. 2025 Apr;43(4):464-465. doi: 10.1038/s41587-025-02583-2.
9
Epigenetic regulation of tumor immunity.肿瘤免疫的表观遗传调控。
J Clin Invest. 2024 Jun 17;134(12):e178540. doi: 10.1172/JCI178540.

本文引用的文献

4
Joint single-cell measurements of nuclear proteins and RNA in vivo.体内核蛋白和 RNA 的联合单细胞测量。
Nat Methods. 2021 Oct;18(10):1204-1212. doi: 10.1038/s41592-021-01278-1. Epub 2021 Oct 4.
5
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
7
Evaluating the transcriptional fidelity of cancer models.评估癌症模型的转录保真度。
Genome Med. 2021 Apr 29;13(1):73. doi: 10.1186/s13073-021-00888-w.
9
Quantifying the effect of experimental perturbations at single-cell resolution.量化单细胞分辨率下实验扰动的影响。
Nat Biotechnol. 2021 May;39(5):619-629. doi: 10.1038/s41587-020-00803-5. Epub 2021 Feb 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验