Suppr超能文献

用于比利时新冠疫情的基于数据的集合种群模型:评估封锁和解封策略的影响。

A data-driven metapopulation model for the Belgian COVID-19 epidemic: assessing the impact of lockdown and exit strategies.

作者信息

Coletti Pietro, Libin Pieter, Petrof Oana, Willem Lander, Abrams Steven, Herzog Sereina A, Faes Christel, Kuylen Elise, Wambua James, Beutels Philippe, Hens Niel

机构信息

Data Science Institute, I-Biostat, Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium.

Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium.

出版信息

BMC Infect Dis. 2021 May 30;21(1):503. doi: 10.1186/s12879-021-06092-w.

Abstract

BACKGROUND

In response to the ongoing COVID-19 pandemic, several countries adopted measures of social distancing to a different degree. For many countries, after successfully curbing the initial wave, lockdown measures were gradually lifted. In Belgium, such relief started on May 4th with phase 1, followed by several subsequent phases over the next few weeks.

METHODS

We analysed the expected impact of relaxing stringent lockdown measures taken according to the phased Belgian exit strategy. We developed a stochastic, data-informed, meta-population model that accounts for mixing and mobility of the age-structured population of Belgium. The model is calibrated to daily hospitalization data and is able to reproduce the outbreak at the national level. We consider different scenarios for relieving the lockdown, quantified in terms of relative reductions in pre-pandemic social mixing and mobility. We validate our assumptions by making comparisons with social contact data collected during and after the lockdown.

RESULTS

Our model is able to successfully describe the initial wave of COVID-19 in Belgium and identifies interactions during leisure/other activities as pivotal in the exit strategy. Indeed, we find a smaller impact of school re-openings as compared to restarting leisure activities and re-openings of work places. We also assess the impact of case isolation of new (suspected) infections, and find that it allows re-establishing relatively more social interactions while still ensuring epidemic control. Scenarios predicting a second wave of hospitalizations were not observed, suggesting that the per-contact probability of infection has changed with respect to the pre-lockdown period.

CONCLUSIONS

Contacts during leisure activities are found to be most influential, followed by professional contacts and school contacts, respectively, for an impending second wave of COVID-19. Regular re-assessment of social contacts in the population is therefore crucial to adjust to evolving behavioral changes that can affect epidemic diffusion.

摘要

背景

为应对持续的新冠疫情,多个国家不同程度地采取了社交距离措施。对许多国家而言,在成功遏制第一波疫情后,封锁措施逐渐解除。在比利时,5月4日开始了第一阶段的解封,随后在接下来的几周内又经历了几个阶段。

方法

我们分析了根据比利时分阶段解封策略放松严格封锁措施的预期影响。我们开发了一个随机的、基于数据的元种群模型,该模型考虑了比利时年龄结构人群的混合和流动情况。该模型根据每日住院数据进行校准,能够在国家层面再现疫情爆发情况。我们考虑了不同的解封情景,以疫情前社交混合和流动的相对减少量来量化。我们通过与封锁期间及之后收集的社会接触数据进行比较来验证我们的假设。

结果

我们的模型能够成功描述比利时新冠疫情的第一波情况,并确定休闲/其他活动期间的互动在解封策略中至关重要。事实上,我们发现与重启休闲活动和工作场所重新开放相比,学校重新开学的影响较小。我们还评估了对新(疑似)感染病例进行隔离的影响,发现这能在确保疫情控制的同时,重新建立相对更多的社会互动。未观察到预测会出现第二波住院高峰的情景,这表明与封锁前相比,每次接触的感染概率发生了变化。

结论

对于即将到来的第二波新冠疫情,发现休闲活动期间的接触最具影响力,其次分别是职业接触和学校接触。因此,定期重新评估人群中的社会接触情况对于适应可能影响疫情传播的不断变化的行为至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验