Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
Nat Commun. 2021 Jun 7;12(1):3413. doi: 10.1038/s41467-021-23776-8.
Bottom-up approaches using building blocks of modules to fabricate scaffolds for tissue engineering applications have enabled the fabrication of structurally complex and multifunctional materials allowing for physical and chemical flexibility to better mimic the native extracellular matrix. Here we report a vapor-phased fabrication process for constructing three-dimensional modulated scaffold materials via simple steps based on controlling mass transport of vapor sublimation and deposition. We demonstrate the fabrication of scaffolds comprised of multiple biomolecules and living cells with built-in boundaries separating the distinct compartments containing defined biological configurations and functions. We show that the fabricated scaffolds have mass production potential. We demonstrate overall >80% cell viability of encapsulated cells and that modulated scaffolds exhibit enhanced cell proliferation, osteogenesis, and neurogenesis, which can be assembled into various geometric configurations. We perform cell co-culture experiments to show independent osteogenesis and angiogenesis activities from separate compartments in one scaffold construct.
自下而上的方法使用模块的构建块来制造组织工程应用的支架,使得制造具有复杂结构和多功能的材料成为可能,从而具有更好地模拟天然细胞外基质的物理和化学灵活性。在这里,我们报告了一种通过简单步骤基于控制气相升华和沉积的质量传输来构建三维调制支架材料的气相制造工艺。我们展示了由多种生物分子和活细胞组成的支架的制造,这些支架具有内置边界,将包含特定生物结构和功能的不同隔室分隔开来。我们表明,所制造的支架具有大规模生产的潜力。我们证明了封装细胞的总体存活率>80%,并且调制支架表现出增强的细胞增殖、成骨和神经发生,这些可以组装成各种几何形状。我们进行了细胞共培养实验,以显示一个支架结构中来自不同隔室的独立成骨和血管生成活性。