Suppr超能文献

生物遥测研究中时间序列数据分析简介。

A brief introduction to the analysis of time-series data from biologging studies.

机构信息

Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200227. doi: 10.1098/rstb.2020.0227. Epub 2021 Jun 28.

Abstract

Recent advances in tagging and biologging technology have yielded unprecedented insights into wild animal physiology. However, time-series data from such wild tracking studies present numerous analytical challenges owing to their unique nature, often exhibiting strong autocorrelation within and among samples, low samples sizes and complicated random effect structures. Gleaning robust quantitative estimates from these physiological data, and, therefore, accurate insights into the life histories of the animals they pertain to, requires careful and thoughtful application of existing statistical tools. Using a combination of both simulated and real datasets, I highlight the key pitfalls associated with analysing physiological data from wild monitoring studies, and investigate issues of optimal study design, statistical power, and model precision and accuracy. I also recommend best practice approaches for dealing with their inherent limitations. This work will provide a concise, accessible roadmap for researchers looking to maximize the yield of information from complex and hard-won biologging datasets. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.

摘要

近年来,标记和生物遥测技术的进步为野生动物生理学研究提供了前所未有的深入见解。然而,由于这些野外追踪研究的数据具有独特的性质,通常在样本内和样本间表现出很强的自相关性,样本量小且随机效应结构复杂,因此此类研究产生的时间序列数据在分析上面临着诸多挑战。要从这些生理数据中得出可靠的定量估计值,并准确了解与之相关的动物的生活史,需要仔细而有针对性地应用现有的统计工具。我使用模拟和真实数据集的组合,突出了分析来自野生监测研究的生理数据时所涉及的关键陷阱,并研究了最佳研究设计、统计功效以及模型精度和准确性等问题。我还为处理其内在局限性推荐了最佳实践方法。这项工作将为希望从复杂且来之不易的生物遥测数据集获得最大信息量的研究人员提供一份简明、易懂的路线图。本文是“测定自由生活动物的生理学(第二部分)”主题专刊的一部分。

相似文献

1
A brief introduction to the analysis of time-series data from biologging studies.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200227. doi: 10.1098/rstb.2020.0227. Epub 2021 Jun 28.
2
Animal tag technology keeps coming of age: an engineering perspective.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200229. doi: 10.1098/rstb.2020.0229. Epub 2021 Jun 28.
3
What is physiologging? Introduction to the theme issue, part 2.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20210028. doi: 10.1098/rstb.2021.0028. Epub 2021 Jun 28.
4
Introduction to the theme issue: Measuring physiology in free-living animals.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200210. doi: 10.1098/rstb.2020.0210. Epub 2021 Jun 14.
5
Future trends in measuring physiology in free-living animals.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200230. doi: 10.1098/rstb.2020.0230. Epub 2021 Jun 28.
6
Measuring hot flashes: summary of a National Institutes of Health workshop.
Mayo Clin Proc. 2004 Jun;79(6):777-81. doi: 10.4065/79.6.777.
7
Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging.
PLoS Biol. 2020 Apr 2;18(4):e3000655. doi: 10.1371/journal.pbio.3000655. eCollection 2020 Apr.
8
Optimizing the use of biologgers for movement ecology research.
J Anim Ecol. 2020 Jan;89(1):186-206. doi: 10.1111/1365-2656.13094. Epub 2019 Oct 1.
9
Biologging and Biotelemetry: Tools for Understanding the Lives and Environments of Marine Animals.
Annu Rev Anim Biosci. 2023 Feb 15;11:247-267. doi: 10.1146/annurev-animal-050322-073657.

引用本文的文献

1
Time synchronisation for millisecond-precision on bio-loggers.
Mov Ecol. 2024 Oct 28;12(1):71. doi: 10.1186/s40462-024-00512-7.
2
Temperature and land use change are associated with reproductive success and phenology.
PeerJ. 2024 Aug 30;12:e17901. doi: 10.7717/peerj.17901. eCollection 2024.
4
Hemoglobin signal network mapping reveals novel indicators for precision medicine.
Sci Rep. 2023 Oct 25;13(1):18257. doi: 10.1038/s41598-023-43694-7.
5
Prediction of women and Children's hospital outpatient numbers based on the autoregressive integrated moving average model.
Heliyon. 2023 Mar 27;9(4):e14845. doi: 10.1016/j.heliyon.2023.e14845. eCollection 2023 Apr.
6
How Reproducibility Will Accelerate Discovery Through Collaboration in Physio-Logging.
Front Physiol. 2022 Jul 8;13:917976. doi: 10.3389/fphys.2022.917976. eCollection 2022.
7
Heart rate as a measure of emotional arousal in evolutionary biology.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200479. doi: 10.1098/rstb.2020.0479. Epub 2021 Jun 28.
8
Introduction to the theme issue: Measuring physiology in free-living animals.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200210. doi: 10.1098/rstb.2020.0210. Epub 2021 Jun 14.

本文引用的文献

1
Future trends in measuring physiology in free-living animals.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200230. doi: 10.1098/rstb.2020.0230. Epub 2021 Jun 28.
2
Uncovering ecological state dynamics with hidden Markov models.
Ecol Lett. 2020 Dec;23(12):1878-1903. doi: 10.1111/ele.13610. Epub 2020 Oct 19.
3
Responding to the weather: energy budgeting by a small mammal in the wild.
Curr Zool. 2020 Feb;66(1):15-20. doi: 10.1093/cz/zoz023. Epub 2019 May 17.
4
Implantation, orientation and validation of a commercially produced heart-rate logger for use in a perciform teleost fish.
Conserv Physiol. 2020 Apr 23;8(1):coaa035. doi: 10.1093/conphys/coaa035. eCollection 2020.
5
Mixed Models Offer No Freedom from Degrees of Freedom.
Trends Ecol Evol. 2020 Apr;35(4):329-335. doi: 10.1016/j.tree.2019.12.004. Epub 2020 Jan 22.
7
Optimizing the use of biologgers for movement ecology research.
J Anim Ecol. 2020 Jan;89(1):186-206. doi: 10.1111/1365-2656.13094. Epub 2019 Oct 1.
9
Weak effects of geolocators on small birds: A meta-analysis controlled for phylogeny and publication bias.
J Anim Ecol. 2020 Jan;89(1):207-220. doi: 10.1111/1365-2656.12962. Epub 2019 Mar 13.
10
A brief introduction to mixed effects modelling and multi-model inference in ecology.
PeerJ. 2018 May 23;6:e4794. doi: 10.7717/peerj.4794. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验