Suppr超能文献

生物遥测研究中时间序列数据分析简介。

A brief introduction to the analysis of time-series data from biologging studies.

机构信息

Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200227. doi: 10.1098/rstb.2020.0227. Epub 2021 Jun 28.

Abstract

Recent advances in tagging and biologging technology have yielded unprecedented insights into wild animal physiology. However, time-series data from such wild tracking studies present numerous analytical challenges owing to their unique nature, often exhibiting strong autocorrelation within and among samples, low samples sizes and complicated random effect structures. Gleaning robust quantitative estimates from these physiological data, and, therefore, accurate insights into the life histories of the animals they pertain to, requires careful and thoughtful application of existing statistical tools. Using a combination of both simulated and real datasets, I highlight the key pitfalls associated with analysing physiological data from wild monitoring studies, and investigate issues of optimal study design, statistical power, and model precision and accuracy. I also recommend best practice approaches for dealing with their inherent limitations. This work will provide a concise, accessible roadmap for researchers looking to maximize the yield of information from complex and hard-won biologging datasets. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.

摘要

近年来,标记和生物遥测技术的进步为野生动物生理学研究提供了前所未有的深入见解。然而,由于这些野外追踪研究的数据具有独特的性质,通常在样本内和样本间表现出很强的自相关性,样本量小且随机效应结构复杂,因此此类研究产生的时间序列数据在分析上面临着诸多挑战。要从这些生理数据中得出可靠的定量估计值,并准确了解与之相关的动物的生活史,需要仔细而有针对性地应用现有的统计工具。我使用模拟和真实数据集的组合,突出了分析来自野生监测研究的生理数据时所涉及的关键陷阱,并研究了最佳研究设计、统计功效以及模型精度和准确性等问题。我还为处理其内在局限性推荐了最佳实践方法。这项工作将为希望从复杂且来之不易的生物遥测数据集获得最大信息量的研究人员提供一份简明、易懂的路线图。本文是“测定自由生活动物的生理学(第二部分)”主题专刊的一部分。

相似文献

1
A brief introduction to the analysis of time-series data from biologging studies.生物遥测研究中时间序列数据分析简介。
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200227. doi: 10.1098/rstb.2020.0227. Epub 2021 Jun 28.
2
Animal tag technology keeps coming of age: an engineering perspective.动物标签技术不断成熟:工程视角。
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200229. doi: 10.1098/rstb.2020.0229. Epub 2021 Jun 28.
3
What is physiologging? Introduction to the theme issue, part 2.生理记录学是什么?主题问题介绍,第 2 部分。
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20210028. doi: 10.1098/rstb.2021.0028. Epub 2021 Jun 28.
4
Introduction to the theme issue: Measuring physiology in free-living animals.主题问题介绍:在自由生活的动物中测量生理学
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200210. doi: 10.1098/rstb.2020.0210. Epub 2021 Jun 14.
5
Future trends in measuring physiology in free-living animals.未来在自由生活动物中测量生理学的趋势。
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200230. doi: 10.1098/rstb.2020.0230. Epub 2021 Jun 28.
8
Optimizing the use of biologgers for movement ecology research.优化生物标记物在运动生态学研究中的应用。
J Anim Ecol. 2020 Jan;89(1):186-206. doi: 10.1111/1365-2656.13094. Epub 2019 Oct 1.

引用本文的文献

7
Heart rate as a measure of emotional arousal in evolutionary biology.心率作为进化生物学中情绪唤醒的衡量指标。
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200479. doi: 10.1098/rstb.2020.0479. Epub 2021 Jun 28.
8
Introduction to the theme issue: Measuring physiology in free-living animals.主题问题介绍:在自由生活的动物中测量生理学
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200210. doi: 10.1098/rstb.2020.0210. Epub 2021 Jun 14.

本文引用的文献

1
Future trends in measuring physiology in free-living animals.未来在自由生活动物中测量生理学的趋势。
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200230. doi: 10.1098/rstb.2020.0230. Epub 2021 Jun 28.
2
Uncovering ecological state dynamics with hidden Markov models.利用隐马尔可夫模型揭示生态状态动态。
Ecol Lett. 2020 Dec;23(12):1878-1903. doi: 10.1111/ele.13610. Epub 2020 Oct 19.
5
Mixed Models Offer No Freedom from Degrees of Freedom.混合模型并不能摆脱自由度的限制。
Trends Ecol Evol. 2020 Apr;35(4):329-335. doi: 10.1016/j.tree.2019.12.004. Epub 2020 Jan 22.
7
Optimizing the use of biologgers for movement ecology research.优化生物标记物在运动生态学研究中的应用。
J Anim Ecol. 2020 Jan;89(1):186-206. doi: 10.1111/1365-2656.13094. Epub 2019 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验