Suppr超能文献

一个转座基因座导致肥厚型心脏的核糖体病,以依赖于蛋白质长度的方式影响 mRNA 翻译。

A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion.

机构信息

Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.

Present Address: NUVISAN ICB GmbH, Lead Discovery-Structrual Biology, 13353, Berlin, Germany.

出版信息

Genome Biol. 2021 Jun 28;22(1):191. doi: 10.1186/s13059-021-02397-w.

Abstract

BACKGROUND

Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines.

RESULTS

We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates.

CONCLUSIONS

We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.

摘要

背景

关于转录遗传变异对核糖体合成蛋白质速度的影响知之甚少。在这里,我们研究了这些遥远遗传位点对 mRNA 翻译效率的影响,并在大鼠重组近交系的小组中定义了它们对复杂疾病表型发展的贡献。

结果

我们确定了几个组织特异性主调控热点,每个热点都控制着多个蛋白质的翻译速度。其中一个位点局限于肥大的心脏,在那里它导致了翻译效率的全转录组和蛋白质长度依赖性变化,改变了肌节蛋白的化学计量翻译速度。该位点在多个同系物系中的机制剖析表明存在翻译机制缺陷,其特征是多核糖体谱明显差异和小核仁 RNA SNORA48 失调。引人注目的是,从酵母到人,我们观察到翻译机制突变体具有一致的蛋白质长度依赖性翻译效率变化,这是其保守特征,包括那些引起核糖体病的突变体。根据突变的因子,蛋白质长度和翻译速度之间预先存在的负相关关系要么增强要么减弱,我们提出这是由于在典型的翻译起始和重新起始率方面,mRNA 特异性失衡导致的。

结论

我们表明,远距离遗传控制 mRNA 翻译在哺乳动物组织中很常见,一个单一的基因组位点就可以触发一个翻译驱动的分子机制。我们的工作说明了遗传变异可以通过何种复杂方式在个体之间驱动表型变异性,并从而导致复杂疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a87/8240307/891434457897/13059_2021_2397_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验