Suppr超能文献

使用X射线图像和增强型密集连接网络进行冠状病毒病(COVID-19)检测

Coronavirus disease (COVID-19) detection using X-ray images and enhanced DenseNet.

作者信息

Albahli Saleh, Ayub Nasir, Shiraz Muhammad

机构信息

Department of Information Technology, Qassim University, Buraydah, Saudi Arabia.

Department of Computer Science, Federal Urdu University, Islamabad, 44000, Pakistan.

出版信息

Appl Soft Comput. 2021 Oct;110:107645. doi: 10.1016/j.asoc.2021.107645. Epub 2021 Jun 25.

Abstract

The 2019 novel coronavirus (COVID-19) originating from China, has spread rapidly among people living in other countries. According to the World Health Organization (WHO), by the end of January, more than 104 million people have been affected by COVID-19, including more than 2 million deaths. The number of COVID-19 test kits available in hospitals is reduced due to the increase in regular cases. Therefore, an automatic detection system should be introduced as a fast, alternative diagnostic to prevent COVID-19 from spreading among humans. For this purpose, three different BiT models: DenseNet, InceptionV3, and Inception-ResNetV4 have been proposed in this analysis for the diagnosis of patients infected with coronavirus pneumonia using X-ray radiographs in the chest. These three models give and examine Receiver Operating Characteristic (ROC) analyses and uncertainty matrices, using 5-fold cross-validation. We have performed the simulations which have visualized that the pre-trained DenseNet model has the best classification efficiency with 92% among two other models proposed (83.47% accuracy for inception V3 and 85.57% accuracy for Inception-ResNetV4).

摘要

源自中国的2019新型冠状病毒(COVID-19)已在其他国家的人群中迅速传播。根据世界卫生组织(WHO)的数据,截至1月底,超过1.04亿人受到COVID-19影响,其中包括200多万人死亡。由于常规病例增加,医院可用的COVID-19检测试剂盒数量减少。因此,应引入自动检测系统作为一种快速的替代诊断方法,以防止COVID-19在人群中传播。为此,本分析中提出了三种不同的BiT模型:DenseNet、InceptionV3和Inception-ResNetV4,用于使用胸部X线片诊断冠状病毒肺炎感染患者。这三种模型使用5折交叉验证进行接收者操作特征(ROC)分析和不确定性矩阵的给出与检验。我们进行的模拟表明,在提出的其他两种模型(Inception V3准确率为83.47%,Inception-ResNetV4准确率为85.57%)中,预训练的DenseNet模型具有最佳分类效率,为92%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64f6/8225990/b816e0d456fc/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验