文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

行为激活与抑郁症状:基于文本的治疗会话中语言指标的纵向评估。

Behavioral Activation and Depression Symptomatology: Longitudinal Assessment of Linguistic Indicators in Text-Based Therapy Sessions.

机构信息

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States.

Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, United States.

出版信息

J Med Internet Res. 2021 Jul 14;23(7):e28244. doi: 10.2196/28244.


DOI:10.2196/28244
PMID:34259637
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8319778/
Abstract

BACKGROUND: Behavioral activation (BA) is rooted in the behavioral theory of depression, which states that increased exposure to meaningful, rewarding activities is a critical factor in the treatment of depression. Assessing constructs relevant to BA currently requires the administration of standardized instruments, such as the Behavioral Activation for Depression Scale (BADS), which places a burden on patients and providers, among other potential limitations. Previous work has shown that depressed and nondepressed individuals may use language differently and that automated tools can detect these differences. The increasing use of online, chat-based mental health counseling presents an unparalleled resource for automated longitudinal linguistic analysis of patients with depression, with the potential to illuminate the role of reward exposure in recovery. OBJECTIVE: This work investigated how linguistic indicators of planning and participation in enjoyable activities identified in online, text-based counseling sessions relate to depression symptomatology over time. METHODS: Using distributional semantics methods applied to a large corpus of text-based online therapy sessions, we devised a set of novel BA-related categories for the Linguistic Inquiry and Word Count (LIWC) software package. We then analyzed the language used by 10,000 patients in online therapy chat logs for indicators of activation and other depression-related markers using LIWC. RESULTS: Despite their conceptual and operational differences, both previously established LIWC markers of depression and our novel linguistic indicators of activation were strongly associated with depression scores (Patient Health Questionnaire [PHQ]-9) and longitudinal patient trajectories. Emotional tone; pronoun rates; words related to sadness, health, and biology; and BA-related LIWC categories appear to be complementary, explaining more of the variance in the PHQ score together than they do independently. CONCLUSIONS: This study enables further work in automated diagnosis and assessment of depression, the refinement of BA psychotherapeutic strategies, and the development of predictive models for decision support.

摘要

背景:行为激活(BA)根植于抑郁的行为理论,该理论指出,增加接触有意义、有回报的活动是治疗抑郁症的关键因素。目前评估与 BA 相关的结构需要使用标准化工具,如行为激活抑郁量表(BADS),这给患者和提供者带来了负担,以及其他潜在的限制。以前的工作表明,抑郁和非抑郁个体可能会以不同的方式使用语言,并且自动化工具可以检测到这些差异。越来越多的在线、基于聊天的心理健康咨询为对抑郁症患者进行自动化纵向语言分析提供了无与伦比的资源,有可能阐明奖励暴露在康复中的作用。

目的:本研究调查了在在线、基于文本的咨询会话中识别出的与计划和参与愉快活动相关的语言指标如何随时间与抑郁症状相关。

方法:我们使用分布语义方法应用于大量基于文本的在线治疗会话语料库,为 Linguistic Inquiry and Word Count(LIWC)软件包设计了一套新的与 BA 相关的类别。然后,我们使用 LIWC 分析了 10000 名在线治疗聊天记录中患者的语言,以寻找激活的指标和其他与抑郁相关的标记。

结果:尽管存在概念和操作上的差异,但先前建立的 LIWC 抑郁标志物和我们新的激活语言指标都与抑郁评分(患者健康问卷[PHQ]-9)和纵向患者轨迹强烈相关。情绪基调;代词率;与悲伤、健康和生物学相关的词语;以及与 BA 相关的 LIWC 类别似乎是互补的,它们一起解释了 PHQ 分数的更多方差,而不是它们各自独立解释的。

结论:这项研究为自动化诊断和评估抑郁症、改进 BA 心理治疗策略以及开发决策支持的预测模型提供了进一步的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/b9d2ff2b2199/jmir_v23i7e28244_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/eb8d620f6668/jmir_v23i7e28244_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/6b038370231e/jmir_v23i7e28244_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/1b8ccaf0257a/jmir_v23i7e28244_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/b9d2ff2b2199/jmir_v23i7e28244_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/eb8d620f6668/jmir_v23i7e28244_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/6b038370231e/jmir_v23i7e28244_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/1b8ccaf0257a/jmir_v23i7e28244_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab13/8319778/b9d2ff2b2199/jmir_v23i7e28244_fig4.jpg

相似文献

[1]
Behavioral Activation and Depression Symptomatology: Longitudinal Assessment of Linguistic Indicators in Text-Based Therapy Sessions.

J Med Internet Res. 2021-7-14

[2]
Longitudinal Changes in Psychological States in Online Health Community Members: Understanding the Long-Term Effects of Participating in an Online Depression Community.

J Med Internet Res. 2017-3-20

[3]
Natural Language Processing for Depression Prediction on Sina Weibo: Method Study and Analysis.

JMIR Ment Health. 2024-9-4

[4]
Linguistic analysis of Latinx patients' responses to a text messaging adjunct during cognitive behavioral therapy for depression.

Behav Res Ther. 2022-3

[5]
Linguistic analysis of patients with mood and anxiety disorders during cognitive behavioral therapy.

Cogn Behav Ther. 2018-1-18

[6]
Detecting Recovery Problems Just in Time: Application of Automated Linguistic Analysis and Supervised Machine Learning to an Online Substance Abuse Forum.

J Med Internet Res. 2018-6-12

[7]
Changes in Language Style and Topics in an Online Eating Disorder Community at the Beginning of the COVID-19 Pandemic: Observational Study.

J Med Internet Res. 2021-7-8

[8]
Assessing Suicide Risk and Emotional Distress in Chinese Social Media: A Text Mining and Machine Learning Study.

J Med Internet Res. 2017-7-10

[9]
Linguistic Variables and Gender Differences Within a Messenger-Based Psychosocial Chat Counseling Service for Children and Adolescents: Cross-Sectional Study.

JMIR Form Res. 2024-1-12

[10]
Linguistic markers for major depressive disorder: a cross-sectional study using an automated procedure.

Front Psychol. 2024-3-6

引用本文的文献

[1]
A randomised cross over trial examining the linguistic markers of depression and anxiety in symptomatic adults.

Npj Ment Health Res. 2025-7-19

[2]
The implementation of digital biomarkers in the diagnosis, treatment and monitoring of mood disorders: a narrative review.

Front Digit Health. 2025-6-17

[3]
Using natural language processing to identify patterns associated with depression, anxiety, and stress symptoms during the COVID-19 pandemic.

J Affect Disord. 2025-5-1

[4]
Relationships between daily emotional experiences and smartphone addiction among college students: moderated mediating role of gender and mental health problems.

Front Psychol. 2024-12-12

[5]
Beyond electronic health record data: leveraging natural language processing and machine learning to uncover cognitive insights from patient-nurse verbal communications.

J Am Med Inform Assoc. 2025-2-1

[6]
Digital phenotyping of depression during pregnancy using self-report data.

J Affect Disord. 2024-11-1

[7]
A computational approach to measure the linguistic characteristics of psychotherapy timing, responsiveness, and consistency.

Npj Ment Health Res. 2022-12-2

[8]
Linguistic markers for major depressive disorder: a cross-sectional study using an automated procedure.

Front Psychol. 2024-3-6

[9]
Linguistic markers of anxiety and depression in Somatic Symptom and Related Disorders: Observational study of a digital intervention.

J Affect Disord. 2024-5-1

[10]
Deep Representations of First-person Pronouns for Prediction of Depression Symptom Severity.

AMIA Annu Symp Proc. 2023

本文引用的文献

[1]
Perceived Utility and Characterization of Personal Google Search Histories to Detect Data Patterns Proximal to a Suicide Attempt in Individuals Who Previously Attempted Suicide: Pilot Cohort Study.

J Med Internet Res. 2021-5-6

[2]
Comparing the streamlined psychotherapy "Engage" with problem-solving therapy in late-life major depression. A randomized clinical trial.

Mol Psychiatry. 2021-9

[3]
Two-way messaging therapy for depression and anxiety: longitudinal response trajectories.

BMC Psychiatry. 2020-6-12

[4]
Improving Mental Health Service Utilization Among Men: A Systematic Review and Synthesis of Behavior Change Techniques Within Interventions Targeting Help-Seeking.

Am J Mens Health. 2019

[5]
Facebook language predicts depression in medical records.

Proc Natl Acad Sci U S A. 2018-10-15

[6]
Linguistic analysis of patients with mood and anxiety disorders during cognitive behavioral therapy.

Cogn Behav Ther. 2018-1-18

[7]
Self-report captures 27 distinct categories of emotion bridged by continuous gradients.

Proc Natl Acad Sci U S A. 2017-9-5

[8]
The first 30 months of the MindSpot Clinic: Evaluation of a national e-mental health service against project objectives.

Aust N Z J Psychiatry. 2016-10-12

[9]
Using Measurement-Based Care to Enhance Any Treatment.

Cogn Behav Pract. 2015-2

[10]
A model for streamlining psychotherapy in the RDoC era: the example of 'Engage'.

Mol Psychiatry. 2014-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索