Suppr超能文献

植物生物学中的数据管理与建模

Data Management and Modeling in Plant Biology.

作者信息

Krantz Maria, Zimmer David, Adler Stephan O, Kitashova Anastasia, Klipp Edda, Mühlhaus Timo, Nägele Thomas

机构信息

Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.

Computational Systems Biology, Technische Universität Kaiserslautern, Kaiserslautern, Germany.

出版信息

Front Plant Sci. 2021 Sep 3;12:717958. doi: 10.3389/fpls.2021.717958. eCollection 2021.

Abstract

The study of plant-environment interactions is a multidisciplinary research field. With the emergence of quantitative large-scale and high-throughput techniques, amount and dimensionality of experimental data have strongly increased. Appropriate strategies for data storage, management, and evaluation are needed to make efficient use of experimental findings. Computational approaches of data mining are essential for deriving statistical trends and signatures contained in data matrices. Although, current biology is challenged by high data dimensionality in general, this is particularly true for plant biology. Plants as sessile organisms have to cope with environmental fluctuations. This typically results in strong dynamics of metabolite and protein concentrations which are often challenging to quantify. Summarizing experimental output results in complex data arrays, which need computational statistics and numerical methods for building quantitative models. Experimental findings need to be combined by computational models to gain a mechanistic understanding of plant metabolism. For this, bioinformatics and mathematics need to be combined with experimental setups in physiology, biochemistry, and molecular biology. This review presents and discusses concepts at the interface of experiment and computation, which are likely to shape current and future plant biology. Finally, this interface is discussed with regard to its capabilities and limitations to develop a quantitative model of plant-environment interactions.

摘要

植物与环境相互作用的研究是一个多学科的研究领域。随着定量大规模和高通量技术的出现,实验数据的数量和维度大幅增加。需要适当的数据存储、管理和评估策略,以有效利用实验结果。数据挖掘的计算方法对于推导数据矩阵中包含的统计趋势和特征至关重要。虽然当前生物学总体上面临着高数据维度的挑战,但对于植物生物学来说尤其如此。植物作为固着生物必须应对环境波动。这通常导致代谢物和蛋白质浓度的强烈动态变化,而这些变化往往难以量化。总结实验输出会产生复杂的数据阵列,这需要计算统计学和数值方法来构建定量模型。实验结果需要通过计算模型进行整合,以获得对植物代谢的机理理解。为此,生物信息学和数学需要与生理学、生物化学和分子生物学的实验设置相结合。本综述介绍并讨论了实验与计算交叉领域的概念,这些概念可能会塑造当前和未来的植物生物学。最后,讨论了这个交叉领域在开发植物 - 环境相互作用定量模型方面的能力和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/976a/8446634/daa3588d4c9d/fpls-12-717958-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验