Department of Computer and Systems Sciences, Stockholm University, 16407 Stockholm, Sweden.
Sensors (Basel). 2021 Jul 24;21(15):5025. doi: 10.3390/s21155025.
Internet of Medical Things (IoMT) provides an excellent opportunity to investigate better automatic medical decision support tools with the effective integration of various medical equipment and associated data. This study explores two such medical decision-making tasks, namely COVID-19 detection and lung area segmentation detection, using chest radiography images. We also explore different cutting-edge machine learning techniques, such as federated learning, semi-supervised learning, transfer learning, and multi-task learning to explore the issue. To analyze the applicability of computationally less capable edge devices in the IoMT system, we report the results using Raspberry Pi devices as accuracy, precision, recall, Fscore for COVID-19 detection, and average dice score for lung segmentation detection tasks. We also publish the results obtained through server-centric simulation for comparison. The results show that Raspberry Pi-centric devices provide better performance in lung segmentation detection, and server-centric experiments provide better results in COVID-19 detection. We also discuss the IoMT application-centric settings, utilizing medical data and decision support systems, and posit that such a system could benefit all the stakeholders in the IoMT domain.
物联网医疗(IoMT)提供了一个极好的机会,可以通过有效整合各种医疗设备和相关数据,研究更好的自动医疗决策支持工具。本研究使用胸部 X 光图像探索了两个这样的医疗决策任务,即 COVID-19 检测和肺区分割检测。我们还探索了不同的前沿机器学习技术,如联邦学习、半监督学习、迁移学习和多任务学习来探讨这个问题。为了分析在 IoMT 系统中计算能力较低的边缘设备的适用性,我们报告了使用 Raspberry Pi 设备的结果,用于 COVID-19 检测的准确性、精度、召回率、Fscore,以及用于肺分割检测任务的平均骰子分数。我们还发布了通过服务器中心模拟获得的结果进行比较。结果表明,基于 Raspberry Pi 的设备在肺分割检测方面提供了更好的性能,而基于服务器的实验在 COVID-19 检测方面提供了更好的结果。我们还讨论了以 IoMT 应用为中心的设置,利用医疗数据和决策支持系统,并认为这样的系统可以使 IoMT 领域的所有利益相关者受益。