Suppr超能文献

多重免疫荧光技术可重复性评估的最佳实践

Best Practices for Technical Reproducibility Assessment of Multiplex Immunofluorescence.

作者信息

Laberiano-Fernández Caddie, Hernández-Ruiz Sharia, Rojas Frank, Parra Edwin Roger

机构信息

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

出版信息

Front Mol Biosci. 2021 Aug 31;8:660202. doi: 10.3389/fmolb.2021.660202. eCollection 2021.

Abstract

Multiplex immunofluorescence (mIF) tyramide signal amplification is a new and useful tool for the study of cancer that combines the staining of multiple markers in a single slide. Several technical requirements are important to performing high-quality staining and analysis and to obtaining high internal and external reproducibility of the results. This review manuscript aimed to describe the mIF panel workflow and discuss the challenges and solutions for ensuring that mIF panels have the highest reproducibility possible. Although this platform has shown high flexibility in cancer studies, it presents several challenges in pre-analytic, analytic, and post-analytic evaluation, as well as with external comparisons. Adequate antibody selection, antibody optimization and validation, panel design, staining optimization and validation, analysis strategies, and correct data generation are important for reproducibility and to minimize or identify possible issues during the mIF staining process that sometimes are not completely under our control, such as the tissue fixation process, storage, and cutting procedures.

摘要

多重免疫荧光(mIF)酪胺信号放大是一种用于癌症研究的新型实用工具,它能在一张载玻片上对多种标志物进行染色。要进行高质量的染色和分析,并获得结果的高内部和外部重现性,有几个技术要求很重要。这篇综述文章旨在描述mIF检测流程,并讨论确保mIF检测具有尽可能高的重现性的挑战及解决方案。尽管该平台在癌症研究中显示出高度的灵活性,但它在分析前、分析和分析后评估以及外部比较方面存在若干挑战。选择合适的抗体、进行抗体优化和验证、设计检测组合、优化和验证染色、分析策略以及正确生成数据对于重现性很重要,并且有助于在mIF染色过程中尽量减少或识别有时不完全受我们控制的可能问题,如组织固定过程、储存和切片程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad3f/8438151/be9950e3dd70/fmolb-08-660202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验