文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多孔钽复合明胶纳米颗粒水凝胶与间充质干细胞来源的内皮细胞整合以构建血管化组织。

Porous tantalum-composited gelatin nanoparticles hydrogel integrated with mesenchymal stem cell-derived endothelial cells to construct vascularized tissue .

作者信息

Zhao Zhenhua, Wang Mang, Shao Fei, Liu Ge, Li Junlei, Wei Xiaowei, Zhang Xiuzhi, Yang Jiahui, Cao Fang, Wang Qiushi, Wang Huanan, Zhao Dewei

机构信息

Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China.

National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China.

出版信息

Regen Biomater. 2021 Sep 16;8(6):rbab051. doi: 10.1093/rb/rbab051. eCollection 2021 Oct.


DOI:10.1093/rb/rbab051
PMID:34603743
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8481010/
Abstract

The ideal scaffold material of angiogenesis should have mechanical strength and provide appropriate physiological microporous structures to mimic the extracellular matrix environment. In this study, we constructed an integrated three-dimensional scaffold material using porous tantalum (pTa), gelatin nanoparticles (GNPs) hydrogel, and seeded with bone marrow mesenchymal stem cells (BMSCs)-derived endothelial cells (ECs) for vascular tissue engineering. The characteristics and biocompatibility of pTa and GNPs hydrogel were evaluated by mechanical testing, scanning electron microscopy, cell counting kit, and live-cell assay. The BMSCs-derived ECs were identified by flow cytometry and angiogenesis assay. BMSCs-derived ECs were seeded on the pTa-GNPs hydrogel scaffold and implanted subcutaneously in nude mice. Four weeks after the operation, the scaffold material was evaluated by histomorphology. The superior biocompatible ability of pTa-GNPs hydrogel scaffold was observed. Our results suggested that 28 days after implantation, the formation of the stable capillary-like network in scaffold material could be promoted significantly. The novel, integrated pTa-GNPs hydrogel scaffold is biocompatible with the host, and exhibits biomechanical and angiogenic properties. Moreover, combined with BMSCs-derived ECs, it could construct vascular engineered tissue . This study may provide a basis for applying pTa in bone regeneration and autologous BMSCs in tissue-engineered vascular grafts.

摘要

理想的血管生成支架材料应具备机械强度,并提供适当的生理微孔结构以模拟细胞外基质环境。在本研究中,我们构建了一种集成三维支架材料,其由多孔钽(pTa)、明胶纳米颗粒(GNPs)水凝胶组成,并接种了源自骨髓间充质干细胞(BMSCs)的内皮细胞(ECs)用于血管组织工程。通过力学测试、扫描电子显微镜、细胞计数试剂盒和活细胞分析对pTa和GNPs水凝胶的特性和生物相容性进行了评估。通过流式细胞术和血管生成分析鉴定了源自BMSCs的ECs。将源自BMSCs的ECs接种到pTa-GNPs水凝胶支架上,并皮下植入裸鼠体内。术后四周,通过组织形态学对支架材料进行评估。观察到pTa-GNPs水凝胶支架具有优异的生物相容能力。我们的结果表明,植入28天后,可显著促进支架材料中稳定的毛细血管样网络的形成。新型集成pTa-GNPs水凝胶支架与宿主具有生物相容性,并表现出生物力学和血管生成特性。此外,与源自BMSCs的ECs相结合,它可以构建血管工程组织。本研究可能为pTa在骨再生中的应用以及自体BMSCs在组织工程血管移植物中的应用提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/8aa2728feb06/rbab051f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/4f31c90c5667/rbab051f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/3d59df0711be/rbab051f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/42a1eb62f1a3/rbab051f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/a9dd025e45b3/rbab051f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/0dd2289ed63e/rbab051f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/d10528d9fb22/rbab051f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/71af5295d057/rbab051f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/28255b0ae324/rbab051f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/327751a2610a/rbab051f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/8aa2728feb06/rbab051f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/4f31c90c5667/rbab051f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/3d59df0711be/rbab051f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/42a1eb62f1a3/rbab051f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/a9dd025e45b3/rbab051f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/0dd2289ed63e/rbab051f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/d10528d9fb22/rbab051f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/71af5295d057/rbab051f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/28255b0ae324/rbab051f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/327751a2610a/rbab051f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/8481010/8aa2728feb06/rbab051f10.jpg

相似文献

[1]
Porous tantalum-composited gelatin nanoparticles hydrogel integrated with mesenchymal stem cell-derived endothelial cells to construct vascularized tissue .

Regen Biomater. 2021-9-16

[2]
Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats.

Stem Cell Res Ther. 2019-3-5

[3]
Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

Exp Biol Med (Maywood). 2016-3

[4]
[Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].

Zhonghua Shao Shang Za Zhi. 2020-11-20

[5]
3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects.

Mater Today Bio. 2022-8-8

[6]
Effect of porous tantalum on promoting the osteogenic differentiation of bone marrow mesenchymal stem cells through the MAPK/ERK signal pathway.

J Orthop Translat. 2019-4-15

[7]
[PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2016-4

[8]
Mesenchymal stem cell-seeded porous tantalum-based biomaterial: A promising choice for promoting bone regeneration.

Colloids Surf B Biointerfaces. 2022-7

[9]
Three-Dimensional, MultiScale, and Interconnected Trabecular Bone Mimic Porous Tantalum Scaffold for Bone Tissue Engineering.

ACS Omega. 2020-8-25

[10]
[Establishment and biological effect evaluation of prevascularized porous β-tricalcium phosphate tissue engineered bone].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022-5-15

引用本文的文献

[1]
The endothelial layer formation in the presence of AuNPs/CdSe/TaNPs-loaded PLCL/PVP-based electrospun nanofibers.

Front Mol Biosci. 2025-8-18

[2]
Study on mRNA delivery via GelMA hydrogel-encapsulated extracellular vesicles for enhanced bone regeneration.

Mater Today Bio. 2025-7-28

[3]
Mechanical and biological properties of 3D printed bone tissue engineering scaffolds.

Front Bioeng Biotechnol. 2025-4-4

[4]
Porous metal materials for applications in orthopedic field: A review on mechanisms in bone healing.

J Orthop Translat. 2024-10-11

[5]
Functional hydrogel empowering 3D printing titanium alloys.

Mater Today Bio. 2024-12-24

[6]
Transition metals in angiogenesis - A narrative review.

Mater Today Bio. 2023-8-3

[7]
Tantalum as Trabecular Metal for Endosseous Implantable Applications.

Biomimetics (Basel). 2023-1-23

[8]
Recent advances in regenerative biomaterials.

Regen Biomater. 2022-12-5

[9]
Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: A thematic review.

Front Bioeng Biotechnol. 2022-9-13

[10]
Differential effect of tantalum nanoparticles versus tantalum micron particles on immune regulation.

Mater Today Bio. 2022-6-25

本文引用的文献

[1]
Porous silicon carbide coated with tantalum as potential material for bone implants.

Regen Biomater. 2020-6-18

[2]
Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis.

Mater Sci Eng C Mater Biol Appl. 2019-7-9

[3]
Advances of injectable hydrogel-based scaffolds for cartilage regeneration.

Regen Biomater. 2019-6

[4]
A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties.

Int J Biol Macromol. 2019-5-5

[5]
Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats.

Stem Cell Res Ther. 2019-3-5

[6]
20 years of porous tantalum in primary and revision hip arthroplasty-time for a critical appraisal.

Acta Orthop. 2018-6

[7]
Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology.

Stem Cell Res Ther. 2018-4-20

[8]
Injectable network biomaterials via molecular or colloidal self-assembly.

Adv Drug Deliv Rev. 2017-11-10

[9]
Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review.

Materials (Basel). 2017-1-10

[10]
Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials.

Int J Mol Sci. 2017-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索