Suppr超能文献

人工智能与腹部脂肪组织分析:文献综述

Artificial intelligence and abdominal adipose tissue analysis: a literature review.

作者信息

Greco Federico, Mallio Carlo Augusto

机构信息

U.O.C. Diagnostica per Immagini Territoriale Aziendale, Cittadella della Salute Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, Lecce, Italy.

Unit of Diagnostic Imaging, Università Campus Bio-Medico di Roma, Rome, Italy.

出版信息

Quant Imaging Med Surg. 2021 Oct;11(10):4461-4474. doi: 10.21037/qims-21-370.

Abstract

Body composition imaging relies on assessment of tissues composition and distribution. Quantitative data provided by body composition imaging analysis have been linked to pathogenesis, risk, and clinical outcomes of a wide spectrum of diseases, including cardiovascular and oncologic. Manual segmentation of imaging data allows to obtain information on abdominal adipose tissue; however, this procedure can be cumbersome and time-consuming. On the other hand, quantitative imaging analysis based on artificial intelligence (AI) has been proposed as a fast and reliable automatic technique for segmentation of abdominal adipose tissue compartments, possibly improving the current standard of care. AI holds the potential to extract quantitative data from computed tomography (CT) and magnetic resonance (MR) images, which in most of the cases are acquired for other purposes. This information is of great importance for physicians dealing with a wide spectrum of diseases, including cardiovascular and oncologic, for the assessment of risk, pathogenesis, clinical outcomes, response to treatments, and complications. In this review we summarize the available evidence on AI algorithms aimed to the segmentation of visceral and subcutaneous adipose tissue compartments on CT and MR images.

摘要

身体成分成像依赖于对组织成分和分布的评估。身体成分成像分析提供的定量数据已与包括心血管疾病和肿瘤疾病在内的多种疾病的发病机制、风险及临床结果相关联。对成像数据进行手动分割可获取腹部脂肪组织的信息;然而,此过程可能繁琐且耗时。另一方面,基于人工智能(AI)的定量成像分析已被提出作为一种快速且可靠的自动技术,用于分割腹部脂肪组织区域,可能会改善当前的医疗标准。人工智能有潜力从计算机断层扫描(CT)和磁共振(MR)图像中提取定量数据,而在大多数情况下,这些图像是出于其他目的获取的。这些信息对于处理包括心血管疾病和肿瘤疾病在内的多种疾病的医生评估风险、发病机制、临床结果、治疗反应及并发症而言至关重要。在本综述中,我们总结了有关旨在对CT和MR图像上的内脏和皮下脂肪组织区域进行分割的人工智能算法的现有证据。

相似文献

1
Artificial intelligence and abdominal adipose tissue analysis: a literature review.
Quant Imaging Med Surg. 2021 Oct;11(10):4461-4474. doi: 10.21037/qims-21-370.
2
Epicardial and pericardial fat analysis on CT images and artificial intelligence: a literature review.
Quant Imaging Med Surg. 2022 Mar;12(3):2075-2089. doi: 10.21037/qims-21-945.
3
Topography mapping of whole body adipose tissue using A fully automated and standardized procedure.
J Magn Reson Imaging. 2010 Feb;31(2):430-9. doi: 10.1002/jmri.22036.
5
Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.
Eur J Radiol. 2016 Sep;85(9):1613-21. doi: 10.1016/j.ejrad.2016.06.006. Epub 2016 Jun 8.
6
Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men.
J Magn Reson Imaging. 2015 Apr;41(4):924-34. doi: 10.1002/jmri.24655. Epub 2014 May 7.
7
Artificial intelligence in abdominal aortic aneurysm.
J Vasc Surg. 2020 Jul;72(1):321-333.e1. doi: 10.1016/j.jvs.2019.12.026. Epub 2020 Feb 21.
8
Quantification of body-torso-wide tissue composition on low-dose CT images via automatic anatomy recognition.
Med Phys. 2019 Mar;46(3):1272-1285. doi: 10.1002/mp.13373. Epub 2019 Feb 5.
10
Automatic Segmentation and Quantification of White and Brown Adipose Tissues from PET/CT Scans.
IEEE Trans Med Imaging. 2017 Mar;36(3):734-744. doi: 10.1109/TMI.2016.2636188. Epub 2016 Dec 6.

引用本文的文献

1
Cardiometabolic risk assessment by anthropometric and biochemical indices in mexican population.
Front Endocrinol (Lausanne). 2025 Jul 14;16:1588469. doi: 10.3389/fendo.2025.1588469. eCollection 2025.
2
Progress in fully automated abdominal CT interpretation-an update over the past decade.
Abdom Radiol (NY). 2025 Jul 8. doi: 10.1007/s00261-025-05094-5.
4
Reproducibility of automatic adipose tissue segmentation using proton density fat fraction images between 1.5 and 3.0 T magnetic resonance.
Quant Imaging Med Surg. 2025 Jan 2;15(1):537-552. doi: 10.21037/qims-24-1306. Epub 2024 Dec 24.
7
Making the invisible visible: imaging techniques for assessing muscle mass and muscle quality in chronic kidney disease.
Clin Kidney J. 2024 Feb 20;17(3):sfae028. doi: 10.1093/ckj/sfae028. eCollection 2024 Mar.
8
ChatGPT in radiology structured reporting: analysis of ChatGPT-3.5 Turbo and GPT-4 in reducing word count and recalling findings.
Quant Imaging Med Surg. 2024 Feb 1;14(2):2096-2102. doi: 10.21037/qims-23-1300. Epub 2024 Jan 5.
10
Biomedical Big Data Technologies, Applications, and Challenges for Precision Medicine: A Review.
Glob Chall. 2023 Nov 20;8(1):2300163. doi: 10.1002/gch2.202300163. eCollection 2024 Jan.

本文引用的文献

1
2
Deep Learning in Neuroradiology: A Systematic Review of Current Algorithms and Approaches for the New Wave of Imaging Technology.
Radiol Artif Intell. 2020 Mar 4;2(2):e190026. doi: 10.1148/ryai.2020190026. eCollection 2020 Mar.
5
Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis.
BMC Gastroenterol. 2021 Jan 6;21(1):10. doi: 10.1186/s12876-020-01585-5.
6
Relationship between visceral adipose tissue and genetic mutations (VHL and KDM5C) in clear cell renal cell carcinoma.
Radiol Med. 2021 May;126(5):645-651. doi: 10.1007/s11547-020-01310-y. Epub 2021 Jan 5.
7
Adipose Tissue Segmentation in Unlabeled Abdomen MRI using Cross Modality Domain Adaptation.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1624-1628. doi: 10.1109/EMBC44109.2020.9176009.
8
Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks.
Eur Radiol. 2021 Apr;31(4):1795-1804. doi: 10.1007/s00330-020-07147-3. Epub 2020 Sep 18.
9
The challenge of COVID-19 low disease prevalence for artificial intelligence models: report of 1,610 patients.
Quant Imaging Med Surg. 2020 Sep;10(9):1891-1893. doi: 10.21037/qims-20-782.
10
Deep learning method for localization and segmentation of abdominal CT.
Comput Med Imaging Graph. 2020 Oct;85:101776. doi: 10.1016/j.compmedimag.2020.101776. Epub 2020 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验