Sufyan Abubakar, Ahmad Nazir, Shahzad Faisal, Embaby Mohamed G, AbuGhazaleh Amer, Khan Nazir A
Department of Animal Science, Southern Illinois University, Carbondale, IL, USA.
Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan.
J Sci Food Agric. 2022 Apr;102(6):2445-2453. doi: 10.1002/jsfa.11584. Epub 2021 Oct 26.
The growing food-feed-fuel competition, declining availability of traditional feeds, higher prices, and the urgent need to provide long-term sustainability for animal production have all triggered global research into the optimum extraction of energy and nutrients from lignin-rich plant biomass. Recent studies have shown that the Pleurotus species of white rot fungus can selectively degrade lignin in lignin-rich plant biomass; however, its effectiveness in selectively degrading lignin depends on the type of substrate and species of fungus. This study was therefore designed to treat wheat straw, rice straw, and corn cob, with Pleurotus eryngii, P. ostreatus, and P. florida for 30 days under solid-state fermentation, to identify a promising fungus-substrate combination for the selective degradation of lignin and optimal improvement in the nutritional value and digestibility of each substrate.
The type of fungus strongly influenced (P < 0.01) selectivity in lignin degradation, and the level of improvement in crude protein (CP), in vitro dry matter digestibility (IVDMD), and in vitro gas production (IVGP), in wheat straw, rice straw, and corn cob. Fungus-substrate interaction data revealed that P. ostreatus caused maximum (P < 0.05) degradation of lignin, and greater (P < 0.05) improvement in CP, IVDMD, and IVGP in wheat straw and rice straw. The lowest (P < 0.05) degradation of lignin and improvement in CP, IVDMD, and IVGP was caused by P. eryngii in corn cob. Among the fungi, the maximum (P < 0.05) degradation of lignin, and greater (P < 0.05) improvement in CP, IVDMD, and IVGP were caused by P. florida as compared with those of P. ostreatus and P. eryngii.
The results highlight significant influence of fungus-substrate combination for selective lignin degradability and the consequent improvement in the nutritional value of the substrates. Maximum selective lignin degradability and improvement in nutritional value and digestibility was caused by P. ostreatus in wheat straw and in rice straw, and by P. florida in corn cob. © 2021 Society of Chemical Industry.
粮食-饲料-燃料竞争日益激烈,传统饲料供应减少,价格上涨,以及为动物生产提供长期可持续性的迫切需求,都引发了全球对从富含木质素的植物生物质中最佳提取能量和营养物质的研究。最近的研究表明,白腐真菌平菇属物种能够选择性地降解富含木质素的植物生物质中的木质素;然而,其选择性降解木质素的有效性取决于底物类型和真菌种类。因此,本研究旨在利用刺芹侧耳、糙皮侧耳和平菇对小麦秸秆、水稻秸秆和玉米芯进行30天的固态发酵处理,以确定一种有前景的真菌-底物组合,用于选择性降解木质素,并优化每种底物的营养价值和消化率。
真菌类型对小麦秸秆、水稻秸秆和玉米芯中木质素降解的选择性以及粗蛋白(CP)、体外干物质消化率(IVDMD)和体外产气(IVGP)的提高水平有显著影响(P<0.01)。真菌-底物相互作用数据显示,糙皮侧耳导致小麦秸秆和水稻秸秆中木质素的最大降解(P<0.05),以及CP、IVDMD和IVGP的更大提高(P<0.05)。刺芹侧耳导致玉米芯中木质素的最低降解(P<0.05)以及CP、IVDMD和IVGP的最小提高。在这些真菌中,与糙皮侧耳和刺芹侧耳相比,平菇导致木质素的最大降解(P<0.05)以及CP、IVDMD和IVGP的更大提高(P<0.05)。
结果突出了真菌-底物组合对选择性木质素降解能力以及底物营养价值相应提高的显著影响。糙皮侧耳对小麦秸秆和水稻秸秆,平菇对玉米芯具有最大的选择性木质素降解能力,并提高了营养价值和消化率。©2021化学工业协会。