Suppr超能文献

皮质网络模型中通过抑制性中间神经元的状态转移。

State transitions through inhibitory interneurons in a cortical network model.

机构信息

Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia.

Department of Neurology, Austin Health, Heidelberg, Australia.

出版信息

PLoS Comput Biol. 2021 Oct 15;17(10):e1009521. doi: 10.1371/journal.pcbi.1009521. eCollection 2021 Oct.

Abstract

Inhibitory interneurons shape the spiking characteristics and computational properties of cortical networks. Interneuron subtypes can precisely regulate cortical function but the roles of interneuron subtypes for promoting different regimes of cortical activity remains unclear. Therefore, we investigated the impact of fast spiking and non-fast spiking interneuron subtypes on cortical activity using a network model with connectivity and synaptic properties constrained by experimental data. We found that network properties were more sensitive to modulation of the fast spiking population, with reductions of fast spiking excitability generating strong spike correlations and network oscillations. Paradoxically, reduced fast spiking excitability produced a reduction of global excitation-inhibition balance and features of an inhibition stabilised network, in which firing rates were driven by the activity of excitatory neurons within the network. Further analysis revealed that the synaptic interactions and biophysical features associated with fast spiking interneurons, in particular their rapid intrinsic response properties and short synaptic latency, enabled this state transition by enhancing gain within the excitatory population. Therefore, fast spiking interneurons may be uniquely positioned to control the strength of recurrent excitatory connectivity and the transition to an inhibition stabilised regime. Overall, our results suggest that interneuron subtypes can exert selective control over excitatory gain allowing for differential modulation of global network state.

摘要

抑制性中间神经元塑造了皮质网络的脉冲特征和计算特性。中间神经元亚型可以精确地调节皮质功能,但中间神经元亚型促进皮质活动不同状态的作用仍不清楚。因此,我们使用连接和突触特性受实验数据约束的网络模型,研究了快速放电和非快速放电中间神经元亚型对皮质活动的影响。我们发现,网络特性对快速放电群体的调制更为敏感,降低快速放电兴奋性会产生强烈的尖峰相关性和网络振荡。矛盾的是,降低快速放电兴奋性会导致全局兴奋-抑制平衡的减少和抑制稳定网络的特征,其中网络的放电率由网络内兴奋性神经元的活动驱动。进一步的分析表明,与快速放电中间神经元相关的突触相互作用和生物物理特征,特别是它们快速的内在反应特性和短的突触潜伏期,通过增强兴奋性群体中的增益,使这种状态转变成为可能。因此,快速放电中间神经元可能具有独特的位置来控制递归兴奋性连接的强度和向抑制稳定状态的转变。总的来说,我们的结果表明,中间神经元亚型可以对兴奋性增益进行选择性控制,从而允许对全局网络状态进行差异调制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8261/8550371/0f90dacb0f5f/pcbi.1009521.g001.jpg

相似文献

1
State transitions through inhibitory interneurons in a cortical network model.
PLoS Comput Biol. 2021 Oct 15;17(10):e1009521. doi: 10.1371/journal.pcbi.1009521. eCollection 2021 Oct.
2
Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.
J Neurosci. 2015 Nov 25;35(47):15555-67. doi: 10.1523/JNEUROSCI.1467-13.2015.
4
Does layer 4 in the barrel cortex function as a balanced circuit when responding to whisker movements?
Neuroscience. 2018 Jan 1;368:29-45. doi: 10.1016/j.neuroscience.2017.07.054. Epub 2017 Aug 1.
5
Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons.
Neuroscience. 2014 Apr 18;265:60-71. doi: 10.1016/j.neuroscience.2014.01.033. Epub 2014 Jan 27.
7
LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.
PLoS Comput Biol. 2011 Oct;7(10):e1002248. doi: 10.1371/journal.pcbi.1002248. Epub 2011 Oct 27.
8
Modulatory effects of inhibition on persistent activity in a cortical microcircuit model.
Front Neural Circuits. 2014 Jan 31;8:7. doi: 10.3389/fncir.2014.00007. eCollection 2014.
10
Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling.
J Neurophysiol. 2015 Jul;114(1):624-37. doi: 10.1152/jn.00304.2015. Epub 2015 May 13.

引用本文的文献

1
Amplifying post-stimulation oscillatory dynamics by engaging synaptic plasticity with transcranial alternating current stimulation.
Front Netw Physiol. 2025 Jul 18;5:1621283. doi: 10.3389/fnetp.2025.1621283. eCollection 2025.
2
Cell-type-specific contributions to theta-gamma coupled rhythms in the hippocampus.
Netw Neurosci. 2025 Mar 3;9(1):100-124. doi: 10.1162/netn_a_00427. eCollection 2025.
3
Latent dynamics of primary sensory cortical population activity structured by fluctuations in the local field potential.
Front Comput Neurosci. 2024 Oct 23;18:1445621. doi: 10.3389/fncom.2024.1445621. eCollection 2024.
4
channelopathies: Navigating from genotype to neural circuit dysfunction.
Front Neurol. 2023 Apr 17;14:1173460. doi: 10.3389/fneur.2023.1173460. eCollection 2023.
5
Selective control of synaptic plasticity in heterogeneous networks through transcranial alternating current stimulation (tACS).
PLoS Comput Biol. 2023 Apr 27;19(4):e1010736. doi: 10.1371/journal.pcbi.1010736. eCollection 2023 Apr.
6
[Auditory response patterns of mouse primary auditory cortex to sound stimuli].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Aug 20;42(8):1212-1220. doi: 10.12122/j.issn.1673-4254.2022.08.14.
7
Modernizing the NEURON Simulator for Sustainability, Portability, and Performance.
Front Neuroinform. 2022 Jun 27;16:884046. doi: 10.3389/fninf.2022.884046. eCollection 2022.

本文引用的文献

1
What is the dynamical regime of cerebral cortex?
Neuron. 2021 Nov 3;109(21):3373-3391. doi: 10.1016/j.neuron.2021.07.031. Epub 2021 Aug 30.
2
Inhibitory stabilization and cortical computation.
Nat Rev Neurosci. 2021 Jan;22(1):21-37. doi: 10.1038/s41583-020-00390-z. Epub 2020 Nov 11.
3
Inhibition stabilization is a widespread property of cortical networks.
Elife. 2020 Jun 29;9:e54875. doi: 10.7554/eLife.54875.
4
Macroscopic gradients of synaptic excitation and inhibition in the neocortex.
Nat Rev Neurosci. 2020 Mar;21(3):169-178. doi: 10.1038/s41583-020-0262-x. Epub 2020 Feb 6.
5
GABA-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons.
Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3192-3202. doi: 10.1073/pnas.1906369117. Epub 2020 Jan 23.
6
Mechanisms underlying gain modulation in the cortex.
Nat Rev Neurosci. 2020 Feb;21(2):80-92. doi: 10.1038/s41583-019-0253-y. Epub 2020 Jan 7.
7
Spatiotemporal constraints on optogenetic inactivation in cortical circuits.
Elife. 2019 Nov 18;8:e48622. doi: 10.7554/eLife.48622.
8
Layer- and Cell-Specific Recruitment Dynamics during Epileptic Seizures In Vivo.
Ann Neurol. 2020 Jan;87(1):97-115. doi: 10.1002/ana.25628. Epub 2019 Nov 22.
9
Functional flexibility in cortical circuits.
Curr Opin Neurobiol. 2019 Oct;58:175-180. doi: 10.1016/j.conb.2019.09.008. Epub 2019 Oct 1.
10
NetPyNE, a tool for data-driven multiscale modeling of brain circuits.
Elife. 2019 Apr 26;8:e44494. doi: 10.7554/eLife.44494.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验