Suppr超能文献

基于机器学习算法的脓毒症早期预测。

Early Prediction of Sepsis Based on Machine Learning Algorithm.

机构信息

School of Mathematics, Southeast University, Nanjing 211189, China.

出版信息

Comput Intell Neurosci. 2021 Oct 12;2021:6522633. doi: 10.1155/2021/6522633. eCollection 2021.

Abstract

Sepsis is an organ failure disease caused by an infection resulting in extremely high mortality. Machine learning algorithms XGBoost and LightGBM are applied to construct two processing methods: mean processing method and feature generation method, aiming to predict early sepsis 6 hours in advance. The feature generation methods are constructed by combining different features, including statistical strength features, window features, and medical features. Miceforest multiple interpolation method is applied to tackle large missing data problems. Results show that the feature generation method outperforms the mean processing method. XGBoost and LightGBM algorithms are both excellent in prediction performance (AUC: 0.910∼0.979), among which LightGBM boasts a faster running speed and is stronger in generalization ability especially on multidimensional data, with AUC reaching 0.979 in the feature generation method. PTT, WBC, and platelets are the key risk factors to predict early sepsis.

摘要

脓毒症是一种器官衰竭疾病,由感染引起,死亡率极高。应用机器学习算法 XGBoost 和 LightGBM 构建两种处理方法:均值处理方法和特征生成方法,旨在提前 6 小时预测早期脓毒症。特征生成方法通过结合不同的特征(包括统计强度特征、窗口特征和医学特征)构建而成。应用 Miceforest 多重插值方法解决大规模缺失数据问题。结果表明,特征生成方法优于均值处理方法。XGBoost 和 LightGBM 算法在预测性能方面均表现出色(AUC:0.910∼0.979),其中 LightGBM 具有更快的运行速度,尤其在多维数据方面具有更强的泛化能力,在特征生成方法中 AUC 达到 0.979。PTT、WBC 和血小板是预测早期脓毒症的关键风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/8526252/7f2b399f9d5b/CIN2021-6522633.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验