Suppr超能文献

EpistoNet:一种基于 Epistocracy 优化的专家混合集成模型,用于检测胸部 X 光图像中的 COVID-19。

EpistoNet: an ensemble of Epistocracy-optimized mixture of experts for detecting COVID-19 on chest X-ray images.

机构信息

Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA.

Medical Image Analysis Lab, Department of Radiology, Henry Ford Health System, Detroit, MI, USA.

出版信息

Sci Rep. 2021 Nov 3;11(1):21564. doi: 10.1038/s41598-021-00524-y.

Abstract

The Coronavirus has spread across the world and infected millions of people, causing devastating damage to the public health and global economies. To mitigate the impact of the coronavirus a reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we propose EpistoNet, a decision tree-based ensemble model using two mixtures of discriminative experts to classify COVID-19 lung infection from chest X-ray images. To optimize the architecture and hyper-parameters of the designed neural networks, we employed Epistocracy algorithm, a recently proposed hyper-heuristic evolutionary method. Using 2500 chest X-ray images consisting of 1250 COVID-19 and 1250 non-COVID-19 cases, we left out 500 images for testing and partitioned the remaining 2000 images into 5 different clusters using K-means clustering algorithm. We trained multiple deep convolutional neural networks on each cluster to help build a mixture of strong discriminative experts from the top-performing models supervised by a gating network. The final ensemble model obtained 95% accuracy on COVID-19 images and 93% accuracy on non-COVID-19. The experimental results show that EpistoNet can accurately, and reliably be used to detect COVID-19 infection in the chest X-ray images, and Epistocracy algorithm can be effectively used to optimize the hyper-parameters of the proposed models.

摘要

冠状病毒已经在全球范围内传播,感染了数百万人,对公众健康和全球经济造成了毁灭性的影响。为了减轻冠状病毒的影响,应该及时实施可靠、快速和准确的诊断系统。在本研究中,我们提出了 EpistoNet,这是一种基于决策树的集成模型,使用两种判别专家的混合物来对胸部 X 光图像中的 COVID-19 肺部感染进行分类。为了优化所设计的神经网络的架构和超参数,我们采用了 Epistocracy 算法,这是一种最近提出的超启发式进化方法。使用包含 1250 例 COVID-19 和 1250 例非 COVID-19 病例的 2500 张胸部 X 光图像,我们留出 500 张图像用于测试,并使用 K-means 聚类算法将其余 2000 张图像分为 5 个不同的簇。我们在每个簇上训练多个深度卷积神经网络,以帮助从受门控网络监督的表现最佳的模型中构建一个强判别专家的混合物。最终的集成模型在 COVID-19 图像上的准确率为 95%,在非 COVID-19 图像上的准确率为 93%。实验结果表明,EpistoNet 可以准确、可靠地用于检测胸部 X 光图像中的 COVID-19 感染,并且 Epistocracy 算法可以有效地用于优化所提出模型的超参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b52/8566470/ed67b8b20311/41598_2021_524_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验