Suppr超能文献

利用深度学习对皮肤组织病理学切片进行黑色素瘤的自动诊断和定位:一项多中心研究。

Automated Diagnosis and Localization of Melanoma from Skin Histopathology Slides Using Deep Learning: A Multicenter Study.

机构信息

National University of Defense Technology, Changsha 410073, China.

The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China.

出版信息

J Healthc Eng. 2021 Oct 26;2021:5972962. doi: 10.1155/2021/5972962. eCollection 2021.

Abstract

In traditional hospital systems, diagnosis and localization of melanoma are the critical challenges for pathological analysis, treatment instructions, and prognosis evaluation particularly in skin diseases. In literature, various studies have been reported to address these issues; however, a prominent smart diagnosis system is needed to be developed for the smart healthcare system. In this study, a deep learning-enabled diagnostic system is proposed and implemented that it has the capacity to automatically detect malignant melanoma in whole slide images (WSIs). In this system, the convolutional neural network (CNN), sophisticated statistical method, and image processing algorithms were integrated and implemented to locate benign and malignant lesions which are extremely useful in the diagnoses process of melanoma disease. To verify the exceptional performance of the proposed scheme, it is implemented in a multicenter database, which has 701 WSIs (641 WSIs from Central South University Xiangya Hospital (CSUXH) and 60 WSIs from the Cancer Genome Atlas (TCGA)). Experimental results have verified that the proposed system has achieved an area under the receiver operating characteristic curve (AUROC) of 0.971. Furthermore, the lesion area on the WSIs is represented by its degree of malignancy. These results show that the proposed system has the capacity to fully automate the diagnosis and localization problem of the melanoma in the smart healthcare systems.

摘要

在传统的医院系统中,黑色素瘤的诊断和定位是病理分析、治疗指导和预后评估的关键挑战,特别是在皮肤病学中。在文献中,已经有各种研究报道来解决这些问题;然而,需要开发一个突出的智能诊断系统,以用于智能医疗保健系统。在本研究中,提出并实现了一个基于深度学习的诊断系统,该系统能够自动检测全切片图像(WSIs)中的恶性黑色素瘤。在该系统中,集成并实现了卷积神经网络(CNN)、复杂的统计方法和图像处理算法,以定位良性和恶性病变,这对黑色素瘤疾病的诊断过程非常有用。为了验证所提出方案的卓越性能,在一个多中心数据库中进行了实现,该数据库包含 701 张 WSIs(CSUXH 有 641 张 WSIs,TCGA 有 60 张 WSIs)。实验结果验证了所提出的系统达到了 0.971 的接收器操作特性曲线(AUROC)。此外,WSIs 上的病变区域通过其恶性程度来表示。这些结果表明,所提出的系统有能力在智能医疗保健系统中完全实现黑色素瘤的自动诊断和定位问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78e2/8564171/805c1d1cdb6b/JHE2021-5972962.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验