Suppr超能文献

使用便携式设备获取的胸部X光图像分析新冠肺炎的深度卷积方法

Deep Convolutional Approaches for the Analysis of COVID-19 Using Chest X-Ray Images From Portable Devices.

作者信息

De Moura Joaquim, Garcia Lucia Ramos, Vidal Placido Francisco Lizancos, Cruz Milena, Lopez Laura Abelairas, Lopez Eva Castro, Novo Jorge, Ortega Marcos

机构信息

Centro de Investigación CITICUniversidade da Coruña 15071 A Coruña Spain.

Grupo VARPAInstituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña 15006 A Coruña Spain.

出版信息

IEEE Access. 2020 Oct 26;8:195594-195607. doi: 10.1109/ACCESS.2020.3033762. eCollection 2020.

Abstract

The recent human coronavirus disease (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the effects of COVID-19 in pulmonary tissues, chest radiography imaging plays an important role in the screening, early detection, and monitoring of the suspected individuals. Hence, as the pandemic of COVID-19 progresses, there will be a greater reliance on the use of portable equipment for the acquisition of chest X-ray images due to its accessibility, widespread availability, and benefits regarding to infection control issues, minimizing the risk of cross-contamination. This work presents novel fully automatic approaches specifically tailored for the classification of chest X-ray images acquired by portable equipment into 3 different clinical categories: normal, pathological, and COVID-19. For this purpose, 3 complementary deep learning approaches based on a densely convolutional network architecture are herein presented. The joint response of all the approaches allows to enhance the differentiation between patients infected with COVID-19, patients with other diseases that manifest characteristics similar to COVID-19 and normal cases. The proposed approaches were validated over a dataset specifically retrieved for this research. Despite the poor quality of the chest X-ray images that is inherent to the nature of the portable equipment, the proposed approaches provided global accuracy values of 79.62%, 90.27% and 79.86%, respectively, allowing a reliable analysis of portable radiographs to facilitate the clinical decision-making process.

摘要

近期的人类冠状病毒病(COVID-19)是由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的呼吸道感染。鉴于COVID-19对肺部组织的影响,胸部X线成像在疑似个体的筛查、早期检测和监测中发挥着重要作用。因此,随着COVID-19大流行的发展,由于其可及性、广泛可用性以及在感染控制问题方面的优势,能够将交叉污染风险降至最低,对便携式设备获取胸部X线图像的依赖将会更大。这项工作提出了新颖的全自动方法,专门用于将便携式设备获取的胸部X线图像分类为3种不同的临床类别:正常、病理和COVID-19。为此,本文提出了3种基于密集卷积网络架构的互补深度学习方法。所有方法的联合响应能够增强感染COVID-19的患者、表现出与COVID-19相似特征的其他疾病患者以及正常病例之间的区分度。所提出的方法在专门为本研究检索的数据集上进行了验证。尽管便携式设备获取的胸部X线图像质量较差,但所提出的方法分别提供了79.62%、90.27%和79.86%的全局准确率值,从而能够对便携式X光片进行可靠分析,以促进临床决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b868/8545263/ce07760a72b3/demou1-3033762.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验